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Abstract

We introduce Question-Answer Meaning
Representations (QAMRs), which repre-
sent the predicate-argument structure of a
sentence as a set of question-answer pairs.
We develop a crowdsourcing scheme to
show that QAMRs can be labeled with
very little training, and gather a dataset
with over 5,000 sentences and 100,000
questions. A qualitative analysis demon-
strates that the crowd-generated question-
answer pairs cover the vast majority of
predicate-argument relationships in exist-
ing datasets (including PropBank, Nom-
Bank, and QA-SRL) along with many pre-
viously under-resourced ones, including
implicit arguments and relations. We also
report baseline models for question gener-
ation and answering, and summarize a re-
cent approach for using QAMR labels to
improve an Open IE system. These results
suggest the freely available1 QAMR data
and annotation scheme should support sig-
nificant future work.

1 Introduction

Predicate-argument relationships form a key part
of sentential meaning representations, and sup-
port answering basic questions such as who did
what to whom. Resources for predicate-argument
structure are well-developed for verbs (e.g. Prop-
Bank (Palmer et al., 2005)) and there have been
efforts to study other parts of speech (e.g. Nom-
Bank (Meyers et al., 2004) and FrameNet (Baker
et al., 1998)) and introduce whole-sentence struc-
tures (e.g. AMR (Banarescu et al., 2013)). How-
ever, highly skilled and trained annotators are re-

∗Work performed while at Bar-Ilan University.
1github.com/uwnlp/qamr

Pierre Vinken, 61 years old, will join the board as a
nonexecutive director Nov. 29.

Who will join as nonexecutive director? - Pierre Vinken
What is Pierre’s last name? - Vinken
Who is 61 years old? - Pierre Vinken
How old is Pierre Vinken? - 61 years old
What will he join? - the board
What will he join the board as? - nonexecutive director
What type of director will Vinken be? - nonexecutive
What day will Vinken join the board? - Nov. 29

Figure 1: Example QAMR.

quired to label data within these formulations for
each new domain, and it takes significant effort to
model each new type of relationship (e.g., noun ar-
guments in NomBank). We propose a new method
to annotate relatively complete representations of
the predicate-argument structure of a sentence,
which can be done easily by non-experts.

We introduce Question-Answer Meaning Rep-
resentations (QAMRs), which represent the
predicate-argument structure of a sentence as a set
of question-answer pairs (see Figure 1). Follow-
ing the QA-SRL formalism (He et al., 2015), each
question-answer pair corresponds to a predicate-
argument relationship. There is no need for a care-
fully curated ontology and the labels are highly in-
terpretable. However, we differ from QA-SRL in
focusing on all words in the sentence rather than
just verbs, and allowing free form questions in-
stead of using templates.

The QAMR formulation provides a new way of
thinking about predicate-argument structure. Any
form of sentence meaning—from a vector of real
numbers to a logical form—should support the
challenge of determining which questions are an-
swerable by the sentence, and what the answers
are. A QAMR sidesteps intermediate formal rep-
resentations by surfacing those questions and an-
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swers as the representation. As with any other rep-
resentation, this can then be reprocessed for down-
stream tasks. Indeed, the question-answer format
facilitates reprocessing for tasks that are similar in
form, for example Open IE (see Section 4).

A key advantage of QAMRs is that they can
be annotated with crowdsourcing. The main chal-
lenge is coverage, as it can be difficult for a sin-
gle annotator to write all possible QA pairs for
a sentence. Instead, we distribute the work be-
tween multiple annotators in a novel crowdsourc-
ing scheme, which we use to gather a dataset
of over 100,000 QA pairs for 5,000 sentences in
Newswire and Wikipedia domains.

Although QAMR questions’ free-form nature is
crucial for our approach, it means that predicates
are not explicitly marked. However, with a simple
predicate-finding heuristic, we can align QAMR
to PropBank, NomBank, and QA-SRL and show
high coverage of predicate-argument structure, in-
cluding more than 90% of non-discourse relation-
ships. Further analysis reveals that QAMRs also
capture many phenomena that are not modeled in
traditional representations of predicate-argument
structure, including coreference, implicit and in-
ferred arguments, and implicit relations (for exam-
ple, with noun adjuncts).

Finally, we report simple neural baselines for
QAMR question generation and answering. We
also highlight a recent result (Stanovsky et al.,
2018) showing that QAMR data can be used to
improve performance on a challenging task: Open
Information Extraction. Together, these results
show that there is significant potential for follow
up work on developing innovative uses of QAMR
and modeling their relatively comprehensive and
complex predicate-argument relationships.

2 Crowdsourcing

We gather QAMRs with a two-stage crowd-
sourcing pipeline2 using monetary incentives and
crowd-driven quality control to ensure high cov-
erage of predicate-argument structure. Generation
workers write QA pairs and validation workers an-
swer or reject the generated questions. Full details
of our setup are given in Appendix A.

Generation Workers receive an English sen-
tence with up to four target words. They are asked
to write as many QA pairs as possible containing

2Built using Amazon Mechanical Turk: www.mturk.
com

PTB Train Dev Test

Sentences 253 3,938 499 480
Annotators 5 1 3 3
QA Pairs 27,082 73,561 27,535 26,994
Filtered 18,789 51,063 19,069 18,959
Cost $2,862 $7,879 $2,919 $2,919
Cost/token $0.44 $0.08 $0.25 $0.25

Table 1: Summary of the data gathered.

each target word in the question or answer, subject
to light constraints (for example, the question must
contain a word from the sentence and be answered
in the sentence, and they must highlight the answer
in the sentence). Workers must write at least one
QA pair for each target word to receive the base
pay of 20c. An increasing bonus of 3(k+1) cents
is paid for each k-th additional QA pair they write
that passes the validation stage.

Validation Workers receive a sentence and a
batch of questions written by an annotator in the
first stage (with no marked target words or an-
swers). The worker must mark each question
as invalid or redundant with another question, or
highlight its answer in the sentence. Two workers
validate and answer each set of questions. They
are paid a base rate of 10c for each batch, with an
extra 2c for each question past four.

Quality control Question writers are disquali-
fied if the percentage of valid judgments on their
questions falls below 75%. Validators need to pass
a qualification test and maintain above 70% agree-
ment with others, where overlapping answer spans
are considered to agree.

2.1 Data Preparation and Annotation

We drew our data from 1,000 Wikinews arti-
cles from 2012–2015 and 1,000 articles from
Wikipedia’s 1,000 core topics,3 partitioned by
document into train, dev, and test, and prepro-
cessed using the Stanford CoreNLP tools (Man-
ning et al., 2014). We also annotated 253 sen-
tences from the Penn Treebank (Marcus et al.,
1993) chosen to overlap with existing resources
for comparison (see Section 3).

For each sentence, we group its non-stopwords
sequentially into groups of 3 or 4 target words,
removing sentences with no content words. By
presenting workers with nearly-contiguous lists of

3https://en.wikipedia.org/wiki/
Wikipedia:1,000_core_topics
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Figure 2: Agreement and validation statistics on all
data gathered. Answers were considered to agree if
their spans overlapped. High agreement on answers in-
dicates that questions were generally interpretable and
answers were consistent.

target words, enforcing non-redundancy, and pro-
viding bonuses, we encourage exhaustiveness over
all possible QA pairs. By allowing the target word
to appear in the question or the answer, we make
the requirements flexible enough that there is al-
most always some QA pair that can be written.

Figure 2 shows agreement statistics for question
validation. We removed questions either validator
counted invalid or redundant, as well as questions
not beginning with a wh-word,4 which we found to
be of low quality. We also annotated the partitions
at different levels of redundancy to allow for more
exhaustive dev, test, and comparison sets. See Ta-
ble 1 for statistics.

3 Data Analysis

In this section, we show that QAMR has high cov-
erage of predicate-argument structure and uses a
rich vocabulary to label fine-grained and implicit
semantic relations.

Coverage To show that QAMR captures the
same kinds of predicate-argument relations as ex-
isting formalisms, we compare our data to Prop-
Bank, NomBank, and QA-SRL. Since predicates
in the questions are not explicitly marked, we use
a simple predicate-finding heuristic to help align
to other formalisms: for each minimal span that
appears in the QAMR questions and answers (i.e.,
none of its subspans appear independently of it
elsewhere in the QAMR), we compute its predi-
cate score as the proportion of its appearances that
are in a question rather than in an answer.5 We
then choose the span with the highest predicate
score in each question as its predicate.

We measure recall on the shared Penn Treebank
sentences for each resource by randomly sampling
n annotators out of 5 for each group of target

4who, what, when, where, why, how, which, and whose
5This follows the intuition that predicates are more likely

to appear in the question; for example, see join in Figure 1.
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Figure 3: Recall of predicate-argument relations for
sentences shared with each of our reference datasets,
with increasing number of annotators.

words, which simulates the situation for the train-
ing set (1 annotator) and the dev/test sets (3 anno-
tators). For each n we took the mean of 10 runs.
Full details of our comparison are in Appendix B.

Results are shown in Figure 3. Single annota-
tors cover over 60% of relationships, and coverage
quickly increases with the number of annotators,
reaching over 90% with all five. This shows that
QAMR’s representational capacity covers the vast
majority of relevant predicate-argument relations
in existing resources. However, coverage in our
training set is low due to low annotation density.

For a qualitative analysis, we sample 150 QA
pairs (see Table 2 for examples).6 Of our sam-
ple, over 90% of question-answer pairs correspond
to a predicate-argument relation expressed in the
sentence,7 including arguments and modifiers of
nouns and verbs as well as relationships like those
within proper names (Table 2, ex. 2c, 3a) and
coreference (ex. 3c, 4c). Questions that do not
align to predicate-argument structure often target
shallow inferences (ex. 3b, 7c).

Rich vocabulary Annotators use the open ques-
tion format to introduce a large vocabulary of ex-
ternal phrases which do not appear in the sen-
tence. Overall, 5,687 different external phrases
are introduced (excluding stopwords), appearing
25,952 times in 38.7% of the questions (see Fig-
ure 4). These include typing words like state and
country (Table 2, ex. 5), most often directly after
the wh-word, and relation-denoting phrases like
work for (ex. 2b), last name (ex. 3a), and victim

6This sample, and statistics for the remainder of this sec-
tion, were taken from the filtered train and development sets,
with a total of about 70k QA pairs.

7We assume a QA pair targets the relation corresponding
to the semantic role of the wh-word in the question.
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Sentence Ann. Question Answers

(1) Climate change affects distribution of
weeds, pests, and diseases.

(a) What affects distribution of diseases? Climate change
VAR (b) What is affected? distribution of... / distribution

(2) Baruch ben Neriah, Jeremiah’s scribe,
used this alphabet to create the later
scripts of the Old Testament.

SYN (a) Who wrote the scripts? Baruch ben Neriah
ROLE (b) Who did Baruch work for? Jeremiah

(c) What is old? Testament / the Old Testament

(3) Mahlunga has said he did nothing
wrong and Judge Horn said he “failed to
express genuine remorse”.

ROLE (a) What is the Judge’s last name? Horn
INF (b) Who doubted his remorse was genuine? Judge Horn
CO (c) Who didn’t express genuine remorse? Mahlunga

(4) In Byron’s later memoirs, “Mary
Chaworth is portrayed as the first object
of his adult sexual feelings.”

(a) Who is portrayed in the work? Mary Chaworth
IMP (b) Who was the object of his sexual feelings? Mary Chaworth
VAR (c) Who was Mary the object of sexual feelings for? Byron

(5) Volunteers are presently renovating
the former post office in the town
of Edwards, Mississippi, United States
for the doctor to have an office.

(a) What town is the post office in? Edwards
(b) What state is the post office in? Mississippi

IMP (c) What country are the volunteers renovating in? United States
VAR (d) What country is the city of Edwards in? United States

(6) The ossicles are the malleus (hammer),
incus (anvil), and the stapes (stirrup).

VAR (a) What is the malleus one of? The ossicles / ossicles

(7) Liam “had his whole life in front
of him”, said Detective Inspector
Andy Logan, who was the senior
investigator of his murder.

ROLE (a) Who is the murder victim Logan is investigating? Liam
ROLE (b) What rank of investigator is Andy Logan? Detective Inspector / senior
INF (c) Who was Detective Logan speaking about? Liam

(8) This cemetery dates from the time of
Menkaure (Junker) or earlier (Reisner),
and contains several stone-built mastabas
dating from as late as the 6th dynasty.

INF (a) How old are the stone-built mastabas? dating from as late as the 6th dynasty / from as late
as the 6th dynasty

IMP (b) What period was earlier than Menkaure? Reisner
(c) What dates from the 6th dynasty? mastabas / several stone-built mastabas

Table 2: Examples of question-answer pairs capturing various semantic relations, annotated with interesting phe-
nomena they exhibit: syntactic variation (VAR), synonym use (SYN), explicit role names for implicit relations
(ROLE), coreference (CO), implicit arguments (IMP), and inferred relations (INF).
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Figure 4: Novel phrases appearing more than 50 times.
Darker phrases appear more commonly after who,
which, or how. The vast majority of external phrases
are used to denote entity/event types or semantic rela-
tions.

(ex. 7a). Despite the open format, synonyms are
not a major issue, obscuring the semantic relation
in only 2% of our sample (ex. 2a).

We also find verbal paraphrases of noun com-
pounds, as proposed by Nakov (2008). For ex-
ample, where Gallup poll appears in the text, one
annotator has written Who conducted the poll?,
which explicates the relationship between Gallup
and poll. Similarly, Who received the bailouts? is
written for the phrase bank bailouts.

Semantics, not just syntax Only 63% of QA
pairs characterize their predicate-argument rela-
tion using the same syntactic relationship as in the
sentence. 5% have answers coreferent with the

syntactic argument (Table 2, ex. 3c, 4c); 17% ex-
hibit syntactic variation, using different preposi-
tions (ex. 4c, 6a), alternating between active and
passive (ex. 1b), or changing between the noun
and verb form of the predicate (ex. 8a); 6% ask
about implicit arguments (ex. 4b, 5c, 8b); and 6%
ask about inferred relations (ex. 3b).

4 Models

To establish initial baselines, we apply existing
neural models for QAMR question generation and
answering. We also briefly summarize a recent
end task result, where QAMR annotations were
used to improve an Open IE system.

Question generation In question generation
(QG), we learn a mapping from a sentence w to
a set of questions q1, . . . , qm. We enumerate pairs
of words (wq, wa) from the sentence to seed the
generator. During training, outputs are questions
q and inputs are tuples (w, wq, wa), where wq ∈ q
and wa is in q’s answer. We also add negative sam-
ples where the output is a special token and the
input has wq, wa that never appear together.

We use an encoder-decoder model with a copy-
ing mechanism (Zhou et al., 2017) to generate a
question from an input sentence with tagging fea-
tures for part of speech, wq, and wa. At test time,
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we run all pairs of content words (wi, wj) where
|i − j| ≤ 5 through the model to yield a set of
questions. On the QAMR test set, this achieves
28% precision and 24% recall with fuzzy match-
ing (multi-BLEU8 > 0.8).

Question answering The format of QAMRs al-
lows us to apply an existing question-answering
model (Seo et al., 2016) designed for the
SQuAD (Rajpurkar et al., 2016) reading compre-
hension task to answer QAMR questions. Train-
ing and testing with the SQuAD metrics on
QAMR, the model achieves 70.8% exact match
and 79.7% F1 score. We further improve perfor-
mance to 75.7% exact match and 83.9% F1 by
pooling our training set with the SQuAD training
data. The relative ease of QA in comparison to QG
suggests that in QAMR, most of the information is
contained in the questions.

Open IE Finally, we also expect that the
predicate-argument relationships represented in
QAMRs will be useful for many end tasks. Such a
result was recently shown for Open IE (Stanovsky
et al., 2018), using our QAMR corpus. Open
IE involves extracting tuples of natural language
phrases that express the propositions asserted by a
sentence. They show that, using a syntactic de-
pendency parser, a QAMR can be converted to
a list of Open IE extractions. Augmenting their
training data with a conversion of our QAMR
dataset yields state-of-the-art performance on sev-
eral Open IE benchmarks (Stanovsky and Dagan,
2016b; Xu et al., 2013; de Sá Mesquita et al.,
2013; Schneider et al., 2017). The gains come
largely from the extra extractions (e.g., with nom-
inal predicates) that QAMRs support over tradi-
tional resources focusing on verbal predications.

5 Related Work

In addition to the semantic formalisms (Palmer
et al., 2005; Meyers et al., 2004; Banarescu et al.,
2013; He et al., 2015) we have already dis-
cussed, FrameNet (Baker et al., 1998) also focuses
predicate-argument structure, but has more fine-
grained argument types. Gerber and Chai (2010)
target implicit nominal arguments. Stanovsky
and Dagan (2016a) annotate non-restrictive noun
phrase modifiers on top of QA-SRL. Other lin-
guistically motivated annotation schemes include

8An average of the BLEU1–BLEU4 scores.

UCCA (Abend and Rappoport, 2013), HSPG tree-
banks (Flickinger et al., 2017), and the Groningen
meaning bank (Basile et al., 2012).

Crowdsourcing has also been applied to gather
annotations of structure in the setup of multiple
choice questions, for example, for Dowty’s se-
mantic proto-roles (Reisinger et al., 2015; White
et al., 2016) and human-in-the-loop parsing and
classification (He et al., 2016; Duan et al., 2016;
Werling et al., 2015), while Wang et al. (2017)
use crowdsourcing with question-answer pairs to
annotate some PropBank roles directly. Our ap-
proach recovers paraphrases of noun compounds
similar to those crowdsourced by Nakov (2008).

More broadly, non-expert annotation has been
used extensively to gather question-answer pairs
over natural language texts, for example in reading
comprehension (Rajpurkar et al., 2016; Richard-
son et al., 2013; Nguyen et al., 2016) and visual
question answering (Antol et al., 2015). However,
while these treat question answering as an end
task, we regard it as a representation of predicate-
argument structure, and focus annotators on a
smaller selection of text (a few target words in a
single sentence, rather than a paragraph) aiming
to achieve high coverage.

6 Conclusion

QAMR provides a new way of thinking about
meaning representation: using open-ended natu-
ral language annotation to represent rich semantic
structure. This paradigm allows for representing a
broad range of semantic phenomena with data eas-
ily gathered from native speakers. Our dataset has
already been used to improve the performance of
an Open IE system, and how best to leverage the
data and model its complex phenomena is an open
challenge which our annotation scheme could sup-
port studying at a relatively large scale.
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A Crowdsourcing Details

In this section we provide full details of the data
collection methodology described in Section 2.
For the exact text of the instructions shown to
workers, and code to reproduce the annotation or
demo the interface, see github.com/uwnlp/
qamr.

Stages Data collection proceeded in two stages:
generation and validation. These were run as
two types of HITs (Human Intelligence Tasks) on
the Amazon Mechanical Turk platform. Work-
ers wrote questions and answers for the genera-
tion task, and those questions would be immedi-
ately uploaded as new HITs for the validation task,
which ran concurrently. Two workers would vali-
date each question. The worker writing the ques-
tion would be assessed based on the validators’
judgments, and the validators would be assessed

based on their agreement. In this way, the qual-
ity of workers in either stage could be quickly as-
sessed so spammers or low-quality workers could
be disqualified before causing much damage.

Question constraints In both stages, we define
a valid question to

(1) contain at least one word from the sentence,

(2) be about the sentence’s meaning,

(3) be answered obviously and explicitly in the
sentence,

(4) not be a yes/no question, and

(5) not be redundant,

where we define two questions as being redun-
dant by the informal criterion of “having the same
meaning” and the same answer. These require-
ments are illustrated with examples.

Workers in the generation phase are instructed
only to write valid questions, while workers in
the validation phase are instructed only to answer
valid questions (marking the rest invalid or redun-
dant).

When we ask that the question contains a word
from the sentence, we allow for changing forms of
the word through inflectional or derivational mor-
phology (with examples of both). The only con-
straint on questions that is strictly enforced by the
interface is a length limit of 50 characters.

Target words In the generation task, each sen-
tence is presented to the worker with several un-
derlined target words. They are required to write
at least one QA pair for each target word, where
the target word must appear either in the question
or the answer. We choose sets of target words by
chunking consecutive words (ignoring stopwords)
into groups of 3 or 4 (or fewer for very short
sentences). Because the target words shown to a
single worker are close to each other—and often
share a constituent—it restricts the set of QA pairs
they write to relate to a certain part of the sen-
tence. However, asking that the target word ap-
pears either in the question or the answer makes it
flexible enough so that the worker is almost never
stuck with no reasonable question to write. We
identified this approach after some experimenta-
tion, finding that together with the monetary in-
centives described below, it struck the appropriate
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Figure 5: Annotation interface for generation.

balance of scope that was small enough to get ex-
haustive annotation, but not so small that it cor-
nered workers into writing awkward questions or
getting frustrated.

Interface In the generation stage, below the sen-
tence, each target word is listed with a text field
below it where they write a question for that target
word. While the text field is focused, they high-
light the answer tokens in the sentence using cus-
tom implemented highlighting functionality. The
highlighted tokens then appear next to the focused
question. The answer tokens need not be a con-
tiguous span in our interface (though they almost
always are in practice). Once a question is writ-
ten and answered, a new text field appears directly
below it for another question, allowing the anno-
tator to write as many questions as they can. See
Figure 5 for a screenshot of the generation task in-
terface.

In the validation stage, no target words are indi-
cated to the user; they only see a list of questions
written in a single HIT by a worker in the gen-
eration stage. They use the arrow keys to switch
between the questions, and use the mouse to as-
sess them: either highlighting the answer in the
sentence, clicking another question to mark the se-
lected one redundant, or clicking the invalid button
to mark a question invalid. See Figure 6.

Incentives and payment Base pay for the gen-
eration stage was 20c, with a bonus of 3(k + 1)
cents for each question beyond the number re-
quired (so, the first extra question would reward
them 6c, the next 9c, and so on). However, their

Figure 6: Annotation interface for validation.

bonuses were only calculated based on the number
of questions considered valid by annotators. So if
a worker in the generation task wrote 2 extra ques-
tions, but any 2 (or 3, or more) of their questions
were judged invalid, then they would receive no
bonus.

In the validation stage, workers were paid 10c
plus a bonus of 2c per question beyond four.

Quality control We used Mechanical Turk’s
quality control mechanisms in several ways. First,
we used the built-in Locale qualification to limit
the tasks to workers based in the United States
as a proxy for English proficiency. Second, we
wrote a multiple-choice qualification test for the
validation task, which tested workers’ understand-
ing of the definitions of question validity and re-
dundancy. Workers were required to get a score of
75% on this test before working on the validation
task.

Finally, we used Mechanical Turk’s built-in
qualification mechanism to keep track of worker
accuracy and agreement ratings. Before working
on either task, a worker would have to request a
qualification which stored their accuracy or agree-
ment value. Then as they worked, it would be
updated over time and they could check its value
in their Mechanical Turk account to see how they
were doing. In the generation task, accuracy was
calculated as the proportion of all judgments (ag-
gregating those from both validators) that were not
invalid or redundant, and accuracy had to remain
above 75% to avoid disqualification. In the vali-
dation task, agreement was calculated by treating
answer spans as agreeing if they had any overlap,
and redundant judgments agreeing if their targets
had agreeing answer spans. A worker’s agreement
had to stay above 70% for them to remain quali-
fied.

If a worker’s accuracy or agreement rating
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dropped within 5% of the threshold, the worker
was automatically sent an email with a warning
and a list of common mistakes and tips they might
use to improve.

Implementation All of our code was written in
Scala, using the Java AWS SDK on the backend
to interface with Mechanical Turk, Akka Actors
and Akka HTTP to implement the web server and
quality control logic, and Scala.js with React to
implement the user interface.

Dataset Our dataset was gathered over the
course of 1 month from 330 unique workers. See
Section 2.1 for details.

B SRL Comparison

In this section we provide the full details of the
comparison of QAMR to PropBank, NomBank,
and QA-SRL given in Section 3.

Preprocessing For each of these resources,
there were certain predicate-argument relation-
ships that we filtered out of the comparison for
being out of scope.

For PropBank, we filter out predicates and ar-
guments that are auxiliary verbs, as well as ref-
erence (R-) roles since aligning these properly is
difficult and their function is primarily syntactic.
We also remove discourse (-DIS) arguments such
as but and instead: these may be regarded as in-
volved in discourse structure separately from the
predicate-argument structure we are investigating.
78% of the original dependencies remain.

For NomBank, we also remove auxiliaries, and
we remove arguments that include the predicate—
which are present for words like salesman and
teacher—leaving 83% of the original dependen-
cies.

For QA-SRL, we use all dependencies, and
where multiple answers were provided to a ques-
tion, we take the union of the answer spans to be
the argument span.

Alignment Because QAMR does not mark
predicates explicitly, we use a simple predicate-
finding heuristic to align the QA pairs in a QAMR
to the predicate-argument relations in each re-
source independently.

For each QAMR, we identify every minimal
span appearing in its questions and answers, i.e.,
a span from the sentence where none of its sub-
spans appear independently of it in the QAMR.

We then calculate a predicate score for each span,
as the proportion of times it appeared in a ques-
tion versus an answer. Then for each QA pair,
we identify the span in the question with highest
predicate score as its predicate span, and the an-
swer as its argument span. This is then aligned to
the predicate-argument arc in the chosen resource
with the greatest non-zero argument overlap such
that the predicate is contained within the ques-
tion’s predicate span. If there is no such align-
ment, we check for an opposite-direction align-
ment where the predicate is in the answer of a
QA pair and the argument completely contains the
question’s predicate span.

Results See Section 3 for a description of the re-
sults. With 1 annotator, we get around 60% recall,
but it begins to level off over 85% with 3 annota-
tors.

We manually examined 25 sentences to study
sources of coverage loss in the 5-annotator case.
In comparison to PropBank and NomBank, the
missing dependencies are due to missing QA pairs
(44%), mistakes in our alignment heuristic (28%),
and subtle modifiers/idiomatic uses (28%). For
example, annotators sometimes overlook phrases
such as so far (marked as a temporal modifier in
PropBank) or let’s (where ’s is marked as a core
verbal argument). Comparing to QA-SRL, 60%
of the missed relations are inferred/ambiguous re-
lations that are common in that dataset. Missed
QA pairs in QA-SRL account for another 20%.

In aggregate, these analyses show that the
QAMR labels capture the same kinds of predicate-
argument structures as existing resources. How-
ever, while our development and test sets can be
expected to have reasonable coverage, where we
have labels from only one annotator for each target
word (as in our training set), the recall low com-
pared to expert-annotated structures, which may
pose challenges to learning.
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