
Ben-Gurion University of the Negev

Faculty of Natural Science

Department of Computer Science

A STUDY IN HEBREW

PARAPHRASE IDENTIFICATION

Thesis submitted as part of the requirements for the

M.Sc. degree of Ben-Gurion University of the Negev

by

Gabriel Stanovsky

December 2012

Subject: A Study in Hebrew Paraphrase Identi�cation

Writen By: Gabriel Stanovsky

Advisor: Professor Michael Elhadad

Department: Computer Science

Faculty: Natural Science

Ben-Gurion University of the Negev

Signatures:

Author: Gabriel Stanovsky Date

Advisor: Professor Michael Elhadad Date

Dept. Committee Chairman Date

I

Contents

1 Introduction 1

1.1 Formal De�nitions . 2

1.1.1 Textual Entailment . 2

1.1.2 Paraphrase . 2

1.1.3 Related Shared Tasks . 3

1.1.4 Paraphrasing in Hebrew . 3

1.2 Motivation . 3

2 Research Questions and Objectives 5

2.1 Research Questions . 5

2.1.1 Hebrew Speci�c properties . 5

2.1.2 Hebrew Datasets for Paraphrasing . 6

2.1.3 Method Adaptation for Hebrew . 6

2.1.4 Producing Hebrew Resources for Other NLP Uses 6

2.2 Objectives . 6

3 Previous Work 7

3.1 Paraphrase Identi�cation . 7

3.2 Paraphrase Generation . 8

3.3 Paraphrases Extraction . 8

3.4 Hebrew Paraphrasing . 9

4 Linguistic Background 10

4.1 Is Paraphrasing Possible? . 10

4.2 Levels of Paraphrasing . 10

4.3 Explaining Paraphrases: What Motivates Deviation from Convention 12

4.4 Syntax and Paraphrases . 13

4.4.1 Phrase Structure Grammar . 14

4.4.2 Dependency Grammar . 15

4.4.3 Examples of Paraphrases Pair in Phrase Structure Grammar vs De-

pendency Grammar . 16

II

4.4.4 Discussion . 18

5 Methodology 21

5.1 Plan of Work . 21

5.2 Learning Methods . 23

5.2.1 Neural Networks . 23

5.2.1.1 Outline . 23

5.2.1.2 Neuron . 23

5.2.1.3 Weights . 24

5.2.1.4 Network Computation . 24

5.2.1.5 Learning . 24

5.2.1.6 Backpropogation . 24

5.2.1.7 Layered Networks . 25

5.2.2 Deep Learning . 25

5.2.2.1 Curriculum Learning . 25

5.2.2.2 Multi Task Learning . 26

5.2.2.3 Word Embeddings . 26

5.2.3 Auto Encoders . 26

5.2.3.1 Outline . 27

5.2.3.2 Neural Network . 27

5.2.3.3 Encoding . 27

5.2.3.4 Decoding . 28

5.2.3.5 Uses in NLP . 28

5.2.4 Tree Matching . 28

5.2.4.1 De�nition . 28

5.2.4.2 Tree Match Score . 29

5.2.4.3 Tree Matching is NP-Complete 29

5.3 Hebrew Paraphrasing . 30

5.3.1 Producing Deep Learning Embedding for Hebrew 30

5.3.1.1 Overview . 30

5.3.1.2 Preprocessing and Hebrew Adaptation 31

5.3.1.3 Language Model . 31

5.3.1.4 Curriculum Learning . 32

5.3.1.5 Stochastic Sampling of the Error Function 32

5.3.1.6 Deep Learning Structure . 33

5.3.2 Binarizing Parse Trees . 34

5.3.2.1 Overview . 34

5.3.2.2 Binarization of Constituency Parse Trees 35

5.3.2.3 Binarization of Dependency Parse Trees 36

III

5.3.3 Learning to Parse on Embeddings Using Autoencoders 36

5.3.3.1 Overview . 36

5.3.3.2 Training Process . 37

5.3.4 Tree Matching . 38

5.3.4.1 Overview . 38

5.3.4.2 Finding Tree Matching . 38

5.4 Experiments . 38

5.4.1 Testing Embeddings . 38

5.4.1.1 Improving POS tagging . 39

5.4.2 Testing Tree Matching as Paraphrase Indicator 39

5.4.3 Testing Dependency vs Constituency Parse Trees 39

6 Experimental Setting and Results 40

6.1 Experimental Setting . 40

6.1.1 Embeddings Generation Corpus . 40

6.1.2 Autoencoding of Parse Trees Training Corpus 40

6.1.3 Labeled Paraphrase Corpus . 41

6.2 Results . 41

6.2.1 Embeddings . 41

6.2.1.1 Annotations . 41

6.2.2 English POS Tagging . 41

6.2.2.1 Corpus . 41

6.2.2.2 Experiments . 41

6.2.2.3 Discussion . 42

6.2.3 Hebrew POS Tagging . 42

6.2.3.1 Corpora . 42

6.2.3.2 Analysis of Corpora . 43

6.2.3.3 Experiments . 44

6.2.3.4 Discussion . 46

6.2.4 Paraphrasing . 46

6.2.4.1 Corpus . 46

6.2.4.2 Paraphrase Identi�cation . 48

6.2.4.3 Discussion . 48

7 Conclusion 49

Bibliography 51

A Proof of Tree Matching NP Completeness 55

IV

B Paraphrase Tagging Guidelines 58

B.1 Goal . 58

B.2 Rules for Tagging . 58

B.2.1 Paraphrase . 58

B.2.1.1 Restrictions . 58

B.2.2 Partial Paraphrase . 59

B.2.3 Negative . 59

B.3 Examples . 59

V

List of Tables

5.1 Baseline results for English paraphrase recognition on the MSRP corpus . . . 22

6.1 Size of the Di�erent Corpora used for Embeddings computation 40

6.2 Experimental Results for English POS Tagging 42

6.3 Hebrew corpora statistics. Values show size in #tokens and #sequences . . . 43

6.4 Unknown Token Percentage . 43

6.5 Percentage of Ambiguous Tokens . 44

6.6 Hebrew Baseline Results. Values show Acc / F1 45

6.7 Hebrew Embeddings Results. Values show Acc / F1. 46

6.8 Category Distribution Over the Paraphrase Corpus 47

6.9 Category Distribution Over the Paraphrase Corpus 47

6.10 Tree Matching Algorithm Performance . 48

VI

List of Figures

4.1 Constituent Parse Tree for the Hebrew Sentence �no bears and no forest� . . 15

4.2 Dependency Parse Tree for the Hebrew Sentence �no bears and no forest� . . 16

4.3 Constituency Emphasis Paraphrasing Example 19

4.4 Dependency Emphasis Paraphrasing Example 19

4.5 Constituent Transliteration Paraphrasing Example 19

4.6 Dependency Transliteration Paraphrasing Example 20

4.7 Constituent Participle and Reported Speech Paraphrasing Example 20

4.8 Dependency Participle and Reported Speech Paraphrasing Example 20

5.1 Deep Network Structure . 33

5.2 Constituency Binarization Paraphrasing Example 35

5.3 Dependency Binarization Paraphrasing Example 35

5.4 Encoding of a Binary Dependency Tree . 37

5.5 Possible Match of a Paraphrase Pair . 39

6.1 Tag Distribution Histogram . 43

6.2 Ambiguous Tokens Distribution Histogram 44

6.3 Hebrew Baseline Accuracy Percentage on Di�erent Corpora and Feature Set . 45

6.4 Hebrew Baseline F1 Percentage on Di�erent Corpora and Feature Set 45

VII

Chapter 1

Introduction

The topic of this research is the processing and generation of natural language paraphrases

from an algorithmic point of view. Focusing mainly on the implication of adapting and

applying such algorithms to the Hebrew language.

Paraphrasing is the action of restating sentences or paragraphs using di�erent sentence

structures or di�erent choice of words, while keeping similar meaning. Paraphrases are used

by an author of a single text in order to elaborate on a given subject, to provide examples,

or to explain a topic by using a di�erent approach while conveying the same message. When

comparing text written by di�erent authors describing similar events, one will also �nd

occurrences of paraphrases, re�ecting style di�erences between the authors.

Paraphrase identi�cation is the task of determining whether two given texts stand in a

relation of paraphrasing. Paraphrase generation is the task of producing a paraphrase given

an original sentence.

While it is natural for native speakers to either paraphrase a given sentence or to deter-

mine if a given pair of text fragments are a paraphrase, an algorithmic formulation of the

tasks is quite challenging.

For example, the following two news snippets (dated from 14.11.11) from two di�erent

News web sites can be considered paraphrases:

(aixrn) y"aa ifkxnd x`ecd wpa sipqa ccey lr ehlzyd gha`ne gxf` �

� A citizen and a guard took over a robber at the general post o�ce in Beer-Sheva. (The

city name appears here as an abbreviation)

(zepexg` zerici) ray x`aa x`ec sipq cecyl dvxy mc` lr ehlzyd gha`ne gxf` �

� A citizen and a guard took over a man who tried to rob the post o�ce in Beer-Sheva.

1

1.1 Formal De�nitions

Recent research in the �eld of paraphrasing in English has yielded the formulation of the

following de�nitions [2][4]:

1.1.1 Textual Entailment

Given two text fragments A,B, determine if one could be inferred from the other. A will

entail B if a human being who trusts A, on all its parts, will consequently have to trust that

B is also true.

For example:

dtexi` zetil`a dnir cgi dkfe qewiipz`pt zveawl 2000 zpya ribd yhw oexec �

� Doron Katash joined the Panathinaikos team in 2000, and won the European cham-

pionship with it.

2000 zpya dtexi` zetil`a dzkf qewiipz`pt zveaw �

� The Panathinaikos team won the European championship in 2000.

For the comprehensive de�nition of textual entailment, see [4].

1.1.2 Paraphrase

Paraphrase is commonly de�ned as bidirectional textual entailment. For example, given two

text fragments (A,B), it could be said that A entails B and vice-versa. A few restrictions

upon these texts have been de�ned:

� This bidirectional entailment can rely also on knowledge which is considered to be

common:

diqex mr xgq mkqdl dribd oiq –

� China has reached a trading agreement with Russia

diqex mr xgq mkqdl dribd mlera zqlke`nd dpicnd –

� The world most populated nation has reached a trading agreement with Russia

� Yet the entailment must not rely solely on prior knowledge:

diqex mr xgq mkqdl dribd oiq –

� China has reached a trading agreement with Russia

mlera zqlke`nd dpicnd `id oiq –

� China is the most populated nation.

A complete de�nition of Hebrew paraphrase is given in appendix B.

2

1.1.3 Related Shared Tasks

Following these de�nitions, several shared tasks have been de�ned and proposed to the

attention of the research community, amongst them:

- Novelty Detection [4], Given a fraction T of text and a corpus C - determine if T

contains new information with respect to C.

- Knowledge Base Population [3], Given a list of entities and a corpus C, extract values

for a pre-de�ned set of attributes (a.k.a. �slots�) corresponding to those entities.

1.1.4 Paraphrasing in Hebrew

We are not aware of previous e�ort in studying paraphrasing in Hebrew - either linguistically

or computationally. The closest e�ort has been that of [29] who have applied the technique of

MultiWordnet to construct an electronic thesaurus in Hebrew; the work does not speci�cally

address the task of paraphrasing detection or generation.

We expect that the speci�c properties of the Hebrew language � speci�cally the pos-

sibility to agglutinate function words (prepositions, conjunctions and articles) with other

words, the relatively free word order syntax, the productive noun-compounding mechanism

(smixut) and several productive word derivation mechanisms (verb constructions - binyanim)

� produces rich opportunities for paraphrasing.

1.2 Motivation

The tasks of generation and identi�cation of paraphrases help in various Natural Language

Processing (NLP) �elds, such as:

- Automatic Text Generation, data from a knowledge base can be expressed in a variety

of forms using paraphrases. The capability of producing text variability is important

for text generators to adapt the generated text to various target audience needs, by

varying the style of the text, its complexity and its level of detail.

- Automatic Summarization, while scanning through a document, paraphrases found in

text body could be detected, and then omitted, in order to provide a shorter version

of the document. This is particularly important in the context of multi-document

summarization: in this task, several similar documents (describing the same events)

are taken as input, and we expect them to contain many paraphrases. The summary

of the cluster of documents should avoid repetitions and contain only one instance of

each group of paraphrases from the source documents.

- Automatic Construction of Thesaurus, identifying paraphrases from freely occurring

text in conjunction with exploiting knowledge of the sentence structure can be used

3

to yield a bank of Hebrew words which are, with high probability, synonyms. The

result of such analysis would lead to automatic construction of a thesaurus in Hebrew,

similar to the Wordnet [16] resource available in English.

4

Chapter 2

Research Questions and Objectives

2.1 Research Questions

As part of this work, we address the research questions related to analysis of paraphrasing

in Hebrew:

2.1.1 Hebrew Speci�c properties

Are there speci�c properties of the Hebrew language that allow paraphrasing?

- Morphological derivation (e.g., using participle forms to operate as nouns, or

verbs). For example, the following pair of sentences is a case of a participle taking

form of a verb to create a paraphrase of a given sentence:

.zelwa mincxp md mitiirzn micliyk -

- When children get tired, they will fall asleep easily.

.zelwa mincxp mitiir micli -

- Tired children fall asleep easily.

- Syntactic variations exploiting free-word order in Hebrew. Sentences in He-

brew may be expressed in di�erent word orderings, as a tool to emphasize di�erent

notions within the same occurrence, which is a common target of paraphrasing:

.dberd z` izpkd ip` -

- I made the cake.

.izpkd dberd z` -

- The cake, I made.

- Lexical replacement. Replacing a Hebrew word with another derived from another

language with transliterations, with another part of speech.

5

dpe`za oihelgl dqxdp zipeknd -

- The car was completely ruined during the accident.

dpe`zd zeawra qel-l`heh dxar zipeknd -

- Because of the accident, the car is a total loss.

2.1.2 Hebrew Datasets for Paraphrasing

Which datasets can be used to collect and identify a database of paraphrases in Hebrew?

The objective is to identify pairs of naturally occurring sentences which are paraphrases

with high likelihood. We still need to manually assess the level of paraphrasing, but we

would like to mine existing text repositories to extract likely candidates.

2.1.3 Method Adaptation for Hebrew

Could approaches taken on other languages (especially English) for paraphrasing identi�ca-

tion and generation be applied on Hebrew? What aspects of the methods must be adapted

to account for speci�c properties of Hebrew?

- Word agglutination

- High morphological ambiguity

- Free-word order syntax

2.1.4 Producing Hebrew Resources for Other NLP Uses

Can the process of learning paraphrases yield resources applicable for other NLP Hebrew

tasks? Recent research in the �eld of NLP tries to reuse training information and share it

across common NLP tasks (this is known as �Deep Learning�). Can such information be

obtained and encoded in such a way to aid other Hebrew NLP tasks?

2.2 Objectives

The overall objective of this work is to develop computational methods to identify para-

phrases in Hebrew text. As part of this objective, we construct a dataset of paraphrase

pairs in Hebrew, we build reusable resources for Hebrew processing (word embeddings) and

measure their impact on other NLP tasks: Parts of Speech (POS) Tagging and Parsing.

6

Chapter 3

Previous Work

Relatively recent research has explored the possibility to learn paraphrases ([6, 33, 32, 25,

21]). These could be divided into three main categories [25]:

- Identi�cation of a paraphrase.

- Generation of paraphrases

- Extraction of paraphrases from large texts.

We review work done in each of these interconnected �elds in the rest of this chapter,

given de�ntions formulated in previous chapters.

3.1 Paraphrase Identi�cation

This task involves receiving a pair of text fragments and determining if the pair consti-

tutes a paraphrase. Barzilay and McKeown [6] have developed an unsupervised paraphrase

identi�cation algorithm. Their dataset consists of multiple English translations of foreign

books (e.g., books that were translated into English more than once). Their assumption

was that di�erent translators will introduce paraphrases when translating the same source

text. First they used the alignment method of [17] to align the corresponding translations.

They continued by applying an iterative model for extracting paraphrases features from the

aligned sentences. The iteration starts with a simple rule, which extracts the surroundings

of identical words (namely a number of tokens before and after an identical word) in both

sentences. From these surroundings they code a "contextual rule", by exploiting the sur-

rounding words parts of speech. They continue by reapplying the new rules learned in the

previous iteration upon their corpus once more, allowing for a prede�ned number of sepa-

rating tokens to appear, thus allowing new rules to arise. This process ends when no more

rules are discovered during a single iteration. During these iterations a classi�er is trained

from the examples extracted from the text.

7

Socher et al [33] created a system for paraphrase identi�cation composed of two parts:

the �rst is an autoencoder [31], trained to compress setences taken from the WSJ corpus

and which were syntactically parsed using an automatic parser (the Stanford parser). The

leaves (representing original words in the sentence, preserving the original word order) were

replaced by 100 dimensional number vector embeddings of the words (obtained by a sta-

tistical language model, [13, 38]). The autoencoder then traverses the tree in a bottom-up

manner, at each step saving the encoding of two already computed nodes at their parent

node. Thus, the system outputs a tree in which each node contains an encoding (a 100

dimensional vector) of the subtree which it spans.

The second part of their system (after the autoencoder has been trained), receives a

sentence pair and computes two parsed auto-encoded trees, as explained above. The eu-

clidean distance between each node i of the �rst sentence, and every node j in the second

is then computed to form a similarity matrix. Since this matrix is not of a �xed size (be-

cause sentence pairs are not of �xed size), this matrix is then sampled by running a sliding

window of �xed, predetermined size, over it and picking the minimum of every window into

a �dynamic-pooling� matrix. This matrix, now being of �xed size, can be fed to another

classifer trained to distinguish between paraphrases pair pooling matrix and non-paraphrase

pair pooling matrix.

This system provides state-of-the-art accuracy in paraphrase identi�cation in English as

of 2012 and seems to be quite robust across domains.

3.2 Paraphrase Generation

Paraphrase Generation is the task of generating a paraphrase of a given text fragment. The

Microsoft NLP team [32] created a system to produce paraphrases of an input English sen-

tence. Their system gathered a large automated training set from news sites, upon which

they performed subsequently: sentence alignment, word alignment and phrasal replacement

identi�cation. They eventually learned a "phrasal translation database" from this dataset.

To create this database they have used methods from the area of Statistical Machine Trans-

lation (SMT). Given an input sentence, they create a "generation lattice" which describes

all possible paraphrases for each possible phrasal alignment where each label is marked with

a probability assigned by the system. The lattice is then exploited to generate traversal

paths which can be ranked by probability.

3.3 Paraphrases Extraction

The task of extracting parphrases from a large given corpus. In the �eld of paraphrase

extraction, [20] is a typical example: they developed a system for extraction of Japanese

paraphrases from the web. They begin by scanning the web for what they call a "de�nition

8

sentence", a sentence which describes a term. This is done by searching for a certain sequence

of part of speech tags which according to their hypothesis de�nition sentence are likely to

adhere to. All the de�nitions of the same terms are considered candidate paraphrases. These

possible paraphrases are parsed for dependency structures using an automated parser and

classi�ed by a Support Vector Machine (SVM) classi�er to decide which candidate should

be declared as a paraphrase. Using this method they have achieved a large collection of

300K paraphrases with estimated precision of 94%.

3.4 Hebrew Paraphrasing

In comparison to the vast research e�orts invested in English paraphrasing, very little work

has been done in the �eld of Hebrew paraphrase. [29] have developed a medium scale

Wordnet for Hebrew, consisting of 5300 groups of synonymous lexical items (synsets).

The approach they have taken was to form the Wordnet by aligning English and Hebrew

expressions, and infer relations from the English available Wordnet onto their created Hebrew

Wordnet. They state that this method (called MultiWordNet) is preferable over building

the Wordnet from scratch since the Hebrew language is poor on computational linguistic

resources. The lack of monolingual dictionaries in Hebrew is given as an example of such

resource.

9

Chapter 4

Linguistic Background

4.1 Is Paraphrasing Possible?

It is unclear whether two sentences can really be considered �equivalent�. This question is for-

mulated clearly in Clark's Principle of Conventionality and Principle of Contrast ([12][11]):

Principle of Conventionality: In every language community, there are certain mean-

ings for which there exist conventional words used to express these meanings.

Principle of Contrast: �Every two forms contrast in meaning�. That is, when there is

a deviation from the conventional word used to express a meaning, a member of the language

community will assume the speaker is seeking to convey a (perhaps slightly) di�erent notion

than that of the conventional meaning.

In other words, following the general approach of minimal distinctive pairs adopted

in structuralist linguistics, any paraphrase pair must be explained by a deviation in meaning.

Many experiments in the linguistic �eld were conducted to provide empirical evidence of

the validity of these two principles. Among these were studies of the way children acquire

language (and seemingly avoid attaching two di�erent words to the same meaning), and

studies across di�erent language communities speaking the same language (showing di�erent

conventional names for the same meaning). Experiments supporting these principles were

also conducted among Hebrew native speakers [15].

If every two forms of words indeed di�er in meaning as research suggests, one can induce

that two di�erent phrases must also di�er in meaning. Thus complete and true meaning

preserving paraphrase does not exist. Still, di�erent linguistic theories attempt to de�ne

�near equivalence� through di�erent ways. We review two such attempts below.

4.2 Levels of Paraphrasing

Halliday in [19] has developed a version of functionalist linguistics which puts emphasis on

the notion of paraphrasing. This perspective sees language as a tool which provides its

10

speakers with a system of choices with which to transfer meaning between the partici-

pants of a conversation. The set of choices available to a speaker are often called linguistic

devices. The functionalist theory enumerates linguistic devices at di�erent levels which,

together, contribute to the expression of meaning in context. For example, Halliday classi�es

linguistic devices in terms on their relation to three main dimensions:

Field Who does what to whom?

Tenor What is the relationship between the speakers?

Mode What theme and register is taken by the speaker?

Meaning is thus transformed from the speaker intention into natural language by deciding

on a set of linguistic choices. Analyzing text, according to this school, is trying to recover

from a sentence the decisions which produced it.

In this perspective, paraphrases are two sentences which are produced by �almost the

same intentions� conveyed using di�erent linguistic devices. Analyzing each of the sentences

in a functionalist point of view is discerning the �input� to the linguistic functions. Pick [30]

gives the following paraphrases as example:

� I �Julius Caesar was assassinated by Brutus�

II �Julius Caesar lay dead at the hands of Brutus�

� I �John lent Mary the book�

II �Mary had the book on loan from John�

According to Pick both sentences of each pair consist of the same functional elements.

But the linguistic devices used to convey this similar meaning are di�erent: with di�erent

syntactic structures and di�erent lexical elements used in each sentence.

Interestingly, some of the decisions taken while producing an utterance are dictated

directly by the speaker intentions, while others are imposed as a consequence of earlier

decisions. For example, when a speaker decides to use a speci�c verb (like �assassinate�),

together with this decision comes the requirement to use a subject and an object. In contrast,

if the predicate �lay dead� is selected, the �agent� of the action does not need to be expressed.

One could just say: �Julius Ceasar lay dead.�

In addition, for some verbs, the speaker must further decide whether to use the verb in

the passive or active voice (�assassinate�) while this option does not exist for others (�lay

dead�).

Accordingly, when one analyzes the set of decisions taken in order to produce two closely

related sentences (a pair of sentences candidate as paraphrases), one must identify the base

decisions which explain the contrast between the two sentences. Those decisions which

derive from other decisions are not necessarily meaningful to the same level. Accordingly,

11

one may distinguish di�erent levels of paraphrasing between pairs of sentences � in other

words, paraphrasing is not a binary relation, but is more a gradable relation between pairs

of sentences.

4.3 Explaining Paraphrases: What Motivates Deviation

from Convention

Based on the principle of conventionality, it is generally assumed that expressions of a given

meaning can be ranked in terms of their conventionality. More conventional expressions

bring less �surprise�. When a deviation from conventional expression is detected, linguists

are often interested in �explaining� the deviation (which is a source of meaning).

For example, Hirst [21] proposes a classi�cation of paraphrases as small scale and large

scale paraphrasing. Small scale paraphrases are two phrases which are identical except for a

few words exchanged for near synonyms. Following the principle of contrast, this divergence

between otherwise identical phrases indicates the speaker intention to give the phrase a

di�erent meaning. For example:

I Yossi bought a carpet at the market

weya gihy dpw iqei �

weya caxn dpw iqei �

� The word �shatiach� in the �rst sentence is substituted with the word �marvad� in

the second. �Shatiah� is the Hebrew contemporary conventional word for carpet.

The deviation in the latter may suggest that Yossi bought a rather exclusive artifact

instead of a usual rug.

II The destruction of the building occurred last year

dxary dpya dxw oiipad qxd �

dxary dpya dxw oiipad oaxeg �

� The word �herez� in the �rst sentence is substituted with the word �hurban� in the

second. As before, The former being the Hebrew contemporary conventional word

for destruction. The deviation in the latter may suggest that the speaker would

like to convey a sense of grief related to the destruction, as opposed to the latter,

which may sound as a more objective description.

III The last few days indicate that the �ghting is over

zeaxwd seq lr micirn mipexg`d minid �

zeaxwd uw lr micirn mipexg`d minid �

12

� The word �sof� in the �rst sentence is substituted with the word �ketz� in the

second. Again, the former being the Hebrew contemporary conventional word for

ending. The deviation in the latter may suggest that the speaker believes that the

break in the �ghting is a more constanst state, as oppose to the former, which may

be understood as a less de�nite state.

Large scale paraphrasing, according to Hirst's division, is the act of di�erent phrasing of

full sentences or paragraphs. This instance of paraphrasing can be found when an author,

either consciously or unconsciously, inserts his own ideology and perception into the details

of an occurrence. For example:

I Emphasis

.dberd z` izpkd ip` �

� I made the cake.

.izpkd dberd z` �

� The cake, I made.

The latter emphasizes the product of the baking (the cake), while the former emphasizes

the maker (I made the cake).

II Ideology

(29.2.2012 ,ux`d) .oeilrd ze`iypn zyxet yipiia �

� Dorit Beinish retires from Supreme Court. (Haaret'z, 29.2.2012)

(28.2.2012 ,zayd xkik) .dziad zkled yipiia zixec �

� Dorit Beinish goes home. (Kikar Hashabat, 28.2.2012)

Although the two news snippets above report the same occurrence - the retirement of

Dorit Beinish from the Supreme Court, it is safe to say that the latter phrase takes a

more supporting approach to her departure.

In general, one can explain the distinction between paraphrases in terms of (1) which level

of linguistic expression di�ers (a single word or the syntactic structure) and (2) what moti-

vates the deviation from one form to another (put emphasis, express additional connotation,

avoid expressing a part of the meaning, indicate di�erent levels of social appreciation).

4.4 Syntax and Paraphrases

One of the main linguistic sources of paraphrasing consists of altering the syntactic structure

of a sentence. For example, one can change a sentence from active to passive voice:

1. The cat eats the mouse.

13

2. The mouse is eaten by the cat.

Many similar syntactic alternations have been identi�ed which can be used as sources

of paraphrasing. When combined with other sources of paraphrasing (such as replacing a

word with a quasi-synonym or with a pronoun), one obtains a large range of variants from

a base sentence:

1. The cat eats the mouse.

2. The mouse is eaten by the cat.

3. It is devoured by the felin.

Parsing (also known as syntax analysis) is the process that maps an input sentence to

the syntactic tree representing the relation among words within the sentence. The syntactic

structure is usually not visible explicitly within the sentence � one must recover it using

the rules of grammar and knowledge of typical relations among speci�c words. Parsing is a

necessary step to assess whether two sentences are syntactic variants, or to align paraphrase

candidates so that each part of the sentence can be further analyzed in terms of lexical

similarity. In the example above, parsing is necessary to discover that �the felin� must be

compared with �the cat� and �devour� with �eat�.

Computational techniques for automatic parsing have seen tremendous progress in the

past decade. We survey two common approaches, phrase structure grammar (constituent

grammar), and dependency grammar. We focus mainly on instances of paraphrases pairs,

and review the resulting parse trees in each of the approaches. From here on, when speaking

of constituents of parse trees we will refer to a part of sentence which can be seen as single

unit in parse tree, i.e., a subtree of a parse tree.

4.4.1 Phrase Structure Grammar

Phrase structure grammar, also known as constituent grammar, is the grammar originally

de�ned by Chomsky[10] as part of the generative school. A Phrase structure grammar is

formally de�ned as a 4-tuple G = (N,T, S, P) where

I N
⋂
T = ∅, N - The non-terminal set, T - the terminal set

II S ∈ N , S being the start symbol

III P = {(u, v) : u, v ∈ (N
⋃
T)∗}, P is �nite and called the production rules

According to these grammars, the leaves (terminals) of the parse tree are the words of the

original sentence, appearing in the original sentence order. Accordingly, the leftmost word

will be represented by the leftmost leaf, and so forth. The rules by which an input sentence

is parsed onto a parse tree are de�ned via a transformational grammar. Computational

14

Figure 4.1: Constituent Parse Tree for the Hebrew Sentence �no bears and no forest�

tools which parse input sentences onto a possible constituent parse tree were devised with

good results for Hebrew and English languages ([9],[18], respectively). Figure 4.1 shows a

constituent parse tree of the Hebrew sentence �No bears and no forest�.

4.4.2 Dependency Grammar

Dependency grammars in modern linguistics date to the work of Tesni`re (1959) [27]. This

approach towards parsing views the syntax analysis of a sentence as consisting of binary

asymmetrical relations between words. In each of these relations there is a word which

functions as a head (also known as governor, regent) and a second word which functions

as a dependent. The relation between the two words is called a dependency. According to

this linguistic theory, the speaker of a language analyzes syntax by perceiving connections

between words, the dependency relation aims at modeling this connection. This binary re-

lation of head - dependent will appear in the parse tree as father - son relation.

This de�nition suggests that dependency parse trees will be formed of words in the sentence.

As opposed to the constituency grammar trees, words in the dependency tree will appear

also as the inner nodes, and not only as terminals. Because of this property, dependency

trees will be of smaller size as that of the matching constituency tree, in which syntactic

nodes are present in addition to the original words of the sentence. As an example of this,

the dependency parse tree for the sentence �no bears and no forest�, which was shown pre-

viously for constituency tree, is shown in �gure 4.2 (18 nodes in constituency tree versus 5

nodes in the dependency tree) .

The root of every subtree will represent the head (and will normally be a verb) of that

subtree (by transitivity), where his direct dependents will be his sons.

15

Figure 4.2: Dependency Parse Tree for the Hebrew Sentence �no bears and no forest�

Various de�nitions exist for determining when two words will appear in a dependency

relation, yet, as is often the case with NLP, none of the rules cover all cases. Following are

a few of these de�nitions [27] (where: H marks the head, D marks the dependent, and C

marks their relation) :

� H determines the syntactic category of C and can often replace C.

� H determines the semantic category of C, D gives semantic speci�cation.

� H is obligatory, D may be optional.

� The form of D depends on H.

� The linear position of D is speci�ed with reference to H.

These should be seen as guidelines for identifying words in dependency relation: failure to

satisfy one of these rules does not necessarily indicate the pair of words is not in a depen-

dency relation. Accordingly, success to satisfy a rule does not necessarily deem the pair as

being in a dependency relation.

As for Constituency parsing, tools to automatically parse a dependency structure of a sen-

tence were devised ([23],[18]).

4.4.3 Examples of Paraphrases Pair in Phrase Structure Grammar

vs Dependency Grammar

In the following section we review paraphrase pairs' parse trees in both formats de�ned

above (i.e, constituency and dependency).

1. A simple example of paraphrase pair was described before, as a pair which demonstrate

the change of emphasis:

.dberd z` izpkd ip` �

� I made the cake.

16

.izpkd dberd z` �

� The cake, I made.

Figure 4.3 and 4.4 show the corresponding constituent and dependency parse trees of

both sentences. In �g. 4.3 we can see the same constituents appearing as subtrees

of both sentences, while in �g. 4.4 we can see that �the cake� in the latter sentence

receives a higher node in the parse tree, when comparing to the former sentence. This

may correspond to its increased emphasis in the second sentence.

2. Recall the example of Hebrew paraphrasing arising from replacing a term with its

transliterated equivalent:

dpe`za oihelgl dqxdp zipeknd �

� The car was completely ruined during the accident.

dpe`zd zeawra qel-l`heh dxar zipeknd �

� Because of the accident, the car is a total loss.

Figure 4.5 and 4.6 show the corresponding constituent and dependency parse trees of

both sentences.

In �g. 4.5 we can see that the general structure is similar within the trees (with

respect to the inner nodes structure and type). There is a change in one constituent

S ⇒ PP ⇒ PP on the right is substituted with S ⇒ ADV P ⇒ RB on the left.

This can be seen as a substitution of the Hebrew �lahalutin� (completely) with the

transliterated term �total loss�.

In �g. 4.6 The governor of the sentence is changed from �neherza� (wrecked), on the

left, to �avra� (su�ered, in this context) on the right. Apart from that we see, again,

the subtree of �lahalutin� (completely) on the left, changed with �total loss� on the

right.

3. In this example we examine a relatively complicated example of paraphrasing, which

includes participles changing part of speech between the two sentences and reported

speech.

i`kf `ed ik eizeprh zexnl ,my` ceygd ik meid eraw mihtey �

� Judges have decided today that the defendant is guilty, although he claimed being

not guilty.

i`kf `edy zexnl eze` mihtey ik xn` meid my`edy ceygd �

� The defendant that was accused today said that he was not guilty.

Figure 4.7 and 4.8 show the corresponding constituent and dependency parse trees of

both sentences.

17

In �g. 4.7 a few similarities can be found, although not as easily as in previous

examples. The �rst level below the root is almost identical, and the prepositional

phrase is also similar.

In �g. 4.8 it is hard to �nd any similarities between the parse trees, nor to map

between matching constituents.

In both �gures it can be seen that the participle �shoftim� (judge) indeed appear in

di�erent nodes in the parse tree.

4.4.4 Discussion

As a conclusion of this section, we notice a few relevant observations with regards to both

formats of parse tree which were shown, within the scope of the task of paraphrase identi�-

cation:

� Dependency parsing yields a tree with signi�cantly less nodes when comparing to

constituency parsing.

� A change in a dependency parse tree due to paraphrasing can in�ict a change in higher

nodes than that of a constituency parse tree.

� Dependency parse trees seem more sensitive to changes in the sentence structure.

� A note on binarization of parse trees: While the binarization of a constituency parse

tree is rather straightforward, this is not the case when binarizing dependency parse

trees. This topic is elaborated in 5.3.2.

18

Figure 4.3: Constituency Emphasis Paraphrasing Example

Figure 4.4: Dependency Emphasis Paraphrasing Example

Figure 4.5: Constituent Transliteration Paraphrasing Example

19

Figure 4.6: Dependency Transliteration Paraphrasing Example

Figure 4.7: Constituent Participle and Reported Speech Paraphrasing Example

Figure 4.8: Dependency Participle and Reported Speech Paraphrasing Example

20

Chapter 5

Methodology

This chapter covers the main methods of learning which are applied in this work, description

of the adaption technique and proposed hypotheses, and �nally the experiments taken to

prove those hypotheses.

The structure of this chapter is as follows: In Section 5.1, we describe the method and

outline of the work in general lines. Section 5.2 reviews the methods of learning applied in

NLP which are relevant to the task of paraphrasing. Section 5.3 contains an in depth plan

for adapting the algorithms discussed to answer the research questions posed in previous

chapter. Section 5.4 concludes this chapter by depicting the experiments by which we test

correctness of the methods proposed.

5.1 Plan of Work

The target of this work is to face the task of paraphrase recognition in Hebrew. To attack

this problem, we apply, adapt, and devise methods of machine learning (neural networks,

autoencoders), and computational linguistics (language models, automatic parsing). Since

this task has not yet been addressed in Hebrew, it is missing comparative benchmark results

and adequate corpora. Thus, we must collect and publish such a corpus. Datasets consist

of a monolingual Hebrew parallel corpus of paraphrases. These are acquired in an unsuper-

vised manner by obtaining hourly news �ashes and corresponding news stories from leading

Israeli News sites. Each news �ash in the dataset is aligned against an assumed matching

news �ash from the other websites. This yields a method for obtaining an automatically

growing dataset. These datasets will be hand tagged by human judges in order to obtain a

baseline comparable corpus, guidelines for formally de�ning what is considered as an Hebrew

paraphrase will also be published as part of this work (see Appendix B). The methods and

hypotheses raised in this work are trained and tested against this corpus. The desired size of

the corpus is 6000 sentences, with 67% of the pairs being in a paraphrase relationship. These

numbers are an Hebrew equivalent of the Microsoft Research Paraphrase Corpus (MSRP

21

Model ACC F1

Wan et al. (2006) 75.6 83.0

Das and Smith (2009) 76.1 82.7

Socher et al. (2011) 76.8 83.6

Table 5.1: Baseline results for English paraphrase recognition on the MSRP corpus

corpus [1]). Recent research in the �eld of English paraphrase uses this corpus as baseline

comparative parallel corpus.

In order to recognize Hebrew paraphrases, we go along the lines of [33] that used auto

encoders on embedded parse trees of the input sentences. They have used word feature vector

representation of the words, as obtained from a deep learning approach. In the course of

this work we reproduce the settings described in that paper for the English language. We

o�er some deviation and improvement of the algorithms they have used, introducing a new

search problem on the pair of trees. Following the reproduction of that experiment we

implement it for the Hebrew language. This implementation requires generating resources

not yet available for the Hebrew language, such as Hebrew word embeddings, binarization

of dependency parse trees, and the parallel paraphrase corpus already mentioned above.

We test both Socher's implementation's equivalent , as well as the proposed improvement

of it, on the Hebrew corpus. The main experiment is the task of identifying paraphrase

identi�cation as described in the previous section. The baseline results of several English

applications on the MSRP corpus appear in Table 5.1.

22

5.2 Learning Methods

Learning methods applied in Arti�cial Intelligence (AI) in general are used to detect some

recurring pattern in input data. If the process of learning is supervised then the pattern is

�rst learned from labeled training data (by adjusting the speci�c parameters of the learning

model). Then the model is tested on an unlabeled, and previously unseen test data, to

measure its ability to infer and deduce from the training phase. We hope that by properly

modeling the input data and correctly adjusting the model parameters during training we

will learn the real underlying pattern embedded in the data.

In Natural Language Processing (NLP) in particular, these methods are employed over

natural language corpora. Training data may be labeled for the speci�c tasks - i.e., pairs of

sentences are marked manually as being paraphrase or not. Additional labels on input data

may include semantic information, which is naturally not present in raw natural language.

These may include Part of Speech (POS) tags, parsing of the sentences, anaphora resolution,

to name a few. Over this data and possibly additional labels, learning methods are used to

explore recurring patterns in the input text. We review below the main learning methods

applied in this work to identify recurring patterns in Hebrew paraphrases.

5.2.1 Neural Networks

5.2.1.1 Outline

The concept of neural networks is to try and imitate the function of neurons in an intelligent

being's brain. Each neuron is modeled as a predetermined di�erentiable function which

receives a predetermined number of inputs. Neurons are connected to other neurons, forming

what can be seen as a graph whose vertices are the neurons, and whose edges are the

connections among those neurons. The topology of this graph is determined a priori. A

neuron network is the set of neurons and their connections. A special case of neurons are

the input neurons - which receive their input from an input instance of predetermined format,

and output neurons which output the result of the total network. Most of the information

in this section is based on the book [34].

5.2.1.2 Neuron

The function of a speci�c neuron can be seen as composition of two functions:

� Integration function: I : Rn → R - receives as input the incoming edges of this neuron

and outputs a single output.

� Activation function: A : R → R - receives the output of the integration function and

returns the �nal output of this neuron.

23

Thus, the function of this neuron can be seen as A ◦ I . The activation function can make

the behavior of the neuron non-linear.

5.2.1.3 Weights

As we've seen, the output of a neuron is in turn part of the input of another neuron. Two

neurons are connected by an edge in the network graph on which the information �travels�.

As part of this model, the graph is seen as a weighted graph. Each of the edges e has

a weight we ∈ R, the information x traveling an edge e is multiplied by we to reach the

integration function as the input x · we.

5.2.1.4 Network Computation

Neural network computation is the process of giving an input instance to the input neurons,

continuing by computing at each step the neuron function, and transferring their output to

their connected neighbors. The process is terminated when the output neurons output a

value. This vector of values is the output of the network and the result of its computation

on the input.

5.2.1.5 Learning

Most of the parameters of the network are predetermined, decided upon during design time,

and remain constant throughout all iterations of network computations. These parameters

are the neural network graph, including the number of neurons and their connections, and the

neuron functions (both integration and activation). The learning is achieved by modifying

the previously mentioned weights of the edges, these change during a number of iterations

which is called �training� in which tagged input (i.e., that the desired output for this input

is known), is fed into the system. Knowing the desired outcome can yield an error value

for this speci�c computation, by means of a distance metric. Thus, after a number of these

iterations, the value of an error function is known at speci�c points of input space. This

error function can be seen as a function of the weighted edges existing in the system, as

these are the only values which can be modi�ed according to the neural network model.

Thus by summing the received errors of all inputs we can arrive at an error value for these

weights. Changing the network weights and recalculating the error yields an error function

in weight space whose values are known at speci�c points. We can search for the minimum

of this error function using numerical methods such as the discrete gradient of the network

function.

5.2.1.6 Backpropogation

Learning in a neural network can thus be reduced to calculating partial derivatives of the

error function over weight space, in order to perform gradient descent on it, and minimizing

24

the error on the training dataset. A common way to calculate these partial derivatives is

Backpropogation. This method exploits the chain rule that applies in calculating derivatives,

and stores the derivative of its input during network computation. After the computation

step begins a backpropogation step which starts from the output nodes, traveling the network

backward, multiplying at each neuron the saved value of the derivative. Thus, the derivative

of the network is obtained at the input neurons.

5.2.1.7 Layered Networks

A special case of neural networks, and one of common use in machine learning is the case

of n layered networks. Several extra restrictions are applied on these networks:

� The Neuron vertices V of the graph can be seen as a union of disjoint sets: V =

V1

⋃
...
⋃
Vn , Vi

⋂
Vj = ∅. In layered networks the inner layers: V2, ..., Vn−1 are

referred to as �hidden layers�, and their respective neurons are referred to as �hidden

units�.

� Edges between neurons can be set only between nodes of adjacent groups, i.e, the

edge set E of the graph can be seen as E = E1

⋃
...

⋃
En−1 , Ei

⋂
Ej = ∅, such that

Ei = {(vi, vi+1)|vi ∈ Vi, vi+1 ∈ Vi+1}

� Normally all neurons in a layer are connected to all neurons of adjacent layers.

Special optimizations for calculating the backpropogation step on layered networks exist,

and we use this type of networks throughout this work.

5.2.2 Deep Learning

Recent research in AI has yielded the approach of deep learning [7]. This approach aims at

modeling the human perception of complicated notions in several levels of representation.

This approach is implemented using several neural networks connected in such a way that

one network output is transferred to another network input. Backpropogation is carried

across networks, starting from the topmost network to the bottom. This process can give

�exibility in determining the networks parameters according to their location and dedicated

task.

5.2.2.1 Curriculum Learning

As part of the model of deep learning, the concept of curriculum learning [8] was established.

This approach claims that by giving the deep learning networks inputs in an increasing order

of complexity (as one teaches a child), the model will be able to obtain better results. This

is due to establishing �rmer representations on the �simple� samples, and improving that

solid ground when facing higher degrees of complexity in the input.

25

5.2.2.2 Multi Task Learning

It is common in recent research to attack several tasks at once, when using deep learning.

[13, 14] created an architecture where the lower levels of the deep learning extract features

of the input text, and embed these features in multidimensional vectors - these vectors are

the output of the bottom networks. These bottom networks are shared across higher-level

tasks (POS tagging, Semantic Role Labeling, Chunking, Name Entity Recognition, and

Language Model calculation). The upper levels, which are task speci�c classi�ers take as

input these embeddings instead of the original text. Thus the lower levels change during

training (which is done in an interleaved manner) of all these tasks. The rationale is that

information learned for one task for representing feature embedding, may be useful for a

second task which classi�es according to the same feature - thus the tasks classi�ers �pro�t�

from the multi training.

This work is impressive in that it achieves state of the art results on a wide range of

natural language tasks using a single uniform feature representation and learning method

for all tasks.

5.2.2.3 Word Embeddings

As a by-product of this process - The embeddings [13] of words were published for English

dictionaries [38] to use as a plug-in enhancer for use in many NLP tasks which treated words

simply as index to a �nite dictionary.

As part of this work, we use a deep learning architecture to learn a Hebrew language

model from a large corpora of unlabeled text. This yields a dictionary of Hebrew word

embeddings which aids the process of paraphrase identi�cation. This dictionary can also

be published to aid other research in the �eld of Hebrew NLP. The language model and

embedding networks are presented with dictionaries of growing size (words are ordered from

the common to the less common), according to the curriculum learning concept.

5.2.3 Auto Encoders

A major drawback on the model of neural networks as presented above is the constant size

of the network, on all its parts. These must be de�ned during the design of the system, and

determine the topology of the network. This constant size of input and inner representations

(known as the connectionist approach) does not the �t the nature of most AI tasks, for which

the instances of a task are not of constant bounded size. NLP tasks possess this property as

well. The instances of natural texts are of variable size and unbounded length � no known

bounds exist for word length, nor for sentence length, nor paragraph length. Speci�cally in

this work, it is easy to observe from the examples given in previous chapters that paraphrases

must not be of identical length, although by de�nition they convey the same amount of

26

information. This property seems to limit, or cancel the use of neural networks in the �eld

of variable length instances, such as NLP.

To attack this problem, several connectionist systems were devised to cope with the

unbounded input size. We review here the approach of Recursive Auto-Associative Memory

(RAAM [31]), also known and extended in later papers as Auto Encoders.

5.2.3.1 Outline

Auto Encoders aim at creating recursive �xed size representations of variable size input.

The input is assumed to be a variable length list of �xed size elements (a character string

for example), mark each element representation size as K. They do so by going over the

input instance of size K ·n and �encoding� every pair of consecutive input elements onto one

compressed representation. Thus obtaining a second level of representation of size K · n2 ,

this process is repeated until the last level contains one element of �xed size which represent

the entire variable size input, in a �xed size representation.

5.2.3.2 Neural Network

The system Pollack [31] devised was composed of two concatenated neural networks:

� Encoder - a neural network composed of an input layer of 2K elements fully connected

to an output layer of K elements.

� Decoder - a neural network composed of an input layer of K elements fully connected

to an output layer of 2K elements.

These two networks are trained concurrently as a single network: a network of 2K input

elements, K hidden units in one hidden layer, and 2K elements in the output layer. During

training on an input element, the element itself is presented as the network desired outcome

- thus training the network to output the input it received, after going through the hidden

layer. The hidden layer (recall that this is actually the output layer of the encoder), now

holds a compact representation of the input. In other words, the auto-encoders �learns� the

identity function while going through a compressed representation of the input space.

5.2.3.3 Encoding

Encoding of a variable size length input is giving to every two consecutive elements (con-

catenated to get 2K elements) to the encoder network, thus producing an element of size K,

this is marked as the father of the two nodes which it encodes. This process repeats until

we are left with one element of size K. This process yields a binary tree of the elements,

in which the leaves are the original input and the inner nodes are representing some subtree

they encode. If the encoding phase is �awless one can reconstruct the entire input sentence

given only the root of this binary tree.

27

5.2.3.4 Decoding

The process of decoding consists of taking the root of the previously mentioned binary tree,

and passing its K elements to the decoder network to receive 2K elements (the decoded

representations of its sons). This process is repeated on the sons until the full tree is

obtained again, and the input sentence is reconstructed.

5.2.3.5 Uses in NLP

Applications for such a system in the NLP �eld consist of taking a natural text structure,

such as a parse tree, and encoding it. Later stages of the algorithms can refer to the entire

structure, or parts of it, as a �xed size input.

[33, 36] have used autoencoders in two NLP applications:

� Predicting sentiment distributions ([36]) : Input sentences were encoded, and during

training the inner representations of the tree were learned, as indicators for sentiment

classi�cation of the sentences.

� Identifying paraphrases ([33]) : Each sentence of the given input sentence were en-

coded. Afterwords, the inner representations were compared and an euclidean distance

was computed across the encoded representations, to train as indicators of paraphras-

ing.

In this work we train an Auto Encoder for Hebrew parsed sentences, and try to compare

inner representations as indicators for paraphrasing. The words in the leaves are replaced

by their multi-dimensional vector embeddings.

5.2.4 Tree Matching

Tree matching is a new concept which we introduce to better exploit the usage of autoen-

coders, compared with the approach taken in [33].

5.2.4.1 De�nition

Consider two binary trees - t1, t2 (corresponding to sentences s1, s2, and obtained from them

by auto encoding) in which the leaves contain word embeddings and the inner nodes contain

encoding of the subtree they span. De�ne a �Tree Match� M , to be a set of tuples (n1, n2),

where n1, n2 are nodes of t1, t2 accordingly, s.t. for every word w in s1(s2), M contains

exactly one tuple which contains a node in the path from w to the root of t1 (t2). For

instance the tuple which contains the root of both sentences is always a match.

This de�nition captures the idea that a paraphrase pair consists of sentences whose

parts are interchangeable, from the sentence level down to the word level (including word-

reordering).

28

5.2.4.2 Tree Match Score

Following this de�nition, a score of a match can be de�ned:

S(M) =
∑

(n1,n2)∈M

(||n1, n2|| · (number of spanned leaves by n1 and n2))

During training, a simple classi�er can learn the threshold below which minimal matches

represents pairs which are paraphrases. After training, the classi�er would hopefully yield

not only a binary value, but also signi�cant matching between the pair, "explaining" why

they are a paraphrase.

5.2.4.3 Tree Matching is NP-Complete

It can be shown that Tree Matching, as de�ned above, is an NP-Complete problem by

showing:

Positive SubsetSum ≤p Tree Matching

For proof, see Appendix A.

29

5.3 Hebrew Paraphrasing

This section describes the speci�c algorithms, modi�cations and adaptations, taken in the

course of this work to answer the research questions. The general approach for paraphrase

identi�cation is as follows:

� Given an input pair (s1, s2) of sentences in He-

brew.

� Parse them for dependency / constituency to re-

ceive two trees (t′1, t
′
2).

� Binarize these trees to obtain two binary parse

trees (t1, t2). (explained in section 5.3.2). Bi-

narization is important to allow us to use auto-

encoders over the binary trees.

� Change the leaves of the trees to contain Col-

lobert & Weston language model embeddings.

(explained in section 5.3.1)

� Use an auto encoder to receive compact represen-

tations at each of the inner nodes. (explained

in section 5.3.3)

� Search for a minimal Tree Matching on those two

trees, and use its value to decide if the pair is a

paraphrase. (explained in section 5.3.4)

input pair

parse

binarize

embed the leaves dictionary

encode using AE

extract minimal match

pass through classi�er

yes/no

The rest of this section explains each of these in detail. The chapter follows a pipeline

architecture � every section's output is the next section's input. Every section start with a

�black box� examination of the currently described logic, and its part in the overall process.

5.3.1 Producing Deep Learning Embedding for Hebrew

5.3.1.1 Overview

As described above, word embeddings are mapping from a �nite word dictionary D onto

a d - dimensional feature numerical vector space. Each word w ∈ D is mapped onto a

vector rw ∈ Rd. It is hoped that the structure of this vector space re�ects word similarity,

so that if two words are �similar� (along multiple linguistic dimensions, meaning, spelling,

morphology, parts of speech etc), their vector encoding will be �close� in Rd.

30

This mapping is produced as a by product of deep learning architecture, and can be seen

as a goal on its own in order to provide a plug-in enhancer for common NLP tasks. As part

of this work, we provide such a resource for Hebrew by learning a language model over a

large Hebrew corpus. The language model on its own won't be used for further tasks, but

the embeddings extracted from the architecture are published, and their ability to enhance

NLP tasks is tested on a common NLP task (POS tagging) in the course of this work.

5.3.1.1.1 Input Dictionaries are pre-constructed in a curriculum learning approach.

These are used to �lter an n-gram corpus, by selecting from the corpus only n-grams which

consist of words from the dictionary. These �ltered n - grams are the input for this stage.

5.3.1.1.2 Output For each word in the dictionary an embedding is produced onto a

100-dimensional hyperplane. This embedding encompasses an encoding of richer features

other than just index into a dictionary, as is usually the case in NLP applications. These

embeddings will serve the next stages by replacing each word by its embedding representa-

tion.

5.3.1.2 Preprocessing and Hebrew Adaptation

The corpus is pretagged with Adler's analyzer [5] for POS, and tokenization. The prepro-

cessing steps taken on this corpus are:

� We take into account only the segmentation of the words � the following Hebrew pre-

�xes appear on their own as a di�erent word:

y,e,d,n,l,k,a

In, As, To, From, The, And, That

� Number tokens appear as NUMBER

After applying this segmentation on the corpus, we obtain a corpus with 131M tokens.

5.3.1.3 Language Model

Language models try to give a score to a phrase in a speci�c language. This score represent

the model's estimation of the phrase being a valid phrase in this language. We build a

probabilistic language model based on a large corpus of 131 million tokens obtained from

news wire information. The language model is built using a neural network, which is trained

to separate between positive and negative examples of n-grams. The correct n - grams

are taken directly from the corpus. The negative examples (termed �corrupt� n - grams)

are created arti�cially, by introducing noise into positive examples. The requirement of

the language model is that it can separate between positive and negative examples by a

31

di�erence score of at least 1.

Therefore, we would like to minimize the following expression:

∑
x∈S

∑
w∈D

max(0, 1− f(s) + f(sw))

S being the pool of all available overlapping n - grams which are composed only of words

in the current dictionary D. f is a network computation function, and sw is the correct

n - gram, where we corrupt the last word of it with the word w. Minimizing this aims at

ensuring a di�erence of 1 between the score of a valid n - gram, and that of all �corrupt�

ones.

5.3.1.4 Curriculum Learning

Following the curriculum learning doctrine [8], we want to present the language model

learning environment with samples in an increasing order of complexity. The complexity of

the samples in the language model learning context, is in terms of the probability of the

appearance of a word in the corpus. E.g., a more common word is considered as a �simple�

example, whereas a less common word is considered a �complicated � example.

Thus the learning is carried out in iterations:

� In the �rst iteration, start from random word embeddings in the range of [−0.01, 0.01]

and train only on n - grams which contain words from a dictionary of the 5000 most

common words.

� In the next iterations, initialize the embeddings as those achieved in the previous step,

and increase the dictionary size to 10K, 30K, 50K and �nally 100K.

5.3.1.5 Stochastic Sampling of the Error Function

The calculation of an error function of the model, as described above, is a computationally

heavy task, as it involves iterating over all the dictionary on every n - gram update. This

fact will make training an unfeasible task when reaching large dictionary sizes. In order to

make the task possible, even on large sizes of the dictionary, we instead sample the error

function using only one corrupt n - gram at each update. Thus stochastically �peeking� into

the model's behavior instead of directly calculating it (this approach is taken by [13]). The

error function for a single iteration on the n - gram s is:

max(0, 1− f(s) + f(sw)) (5.1)

Where w is a word chosen uniformly at random from the dictionary.

This term is then backpropogated through the network to alter its parameters accordingly.

32

Figure 5.1: Deep Network Structure

5.3.1.6 Deep Learning Structure

This section describes in greater detail the neural network structure devised in order to

achieve a model which is capable of computing the language model score according to the

requirements described above. As a by product of the language model training, d - dimen-

sional Hebrew word embeddings will be created in the deep structure hidden layers. Figure

4.1 graphically shows the structure described below.

� Embedding networks - These are |D| distinct neural networks with input and output

layers of size d, and no hidden layers. Each of which can be seen as a matrix M ∈ Rdxd

of the network's weight.

� Embedding Dictionary - This will be the output of the embedding network com-

putation - the mapping between words onto the feature vectors:

� Its keys are the words w of the current dictionary D

� Its values are (vw ∈ Rd,Mw ∈ Rdxd). These represent an initial word embedding

vw and a matrix of weights � this is adjusted during the embedding networks

training phase.

To obtain the embedding of w, one can perform vw ·Mw. We will mark the embedding

of a word w as emb(w) and the embedding of an n gram G = (w1, ..., wn) as emb(G) =

(emb(w1), ..., emb(wn))

� Language model network - A neural network with:

� d · n input neurons (recall that we are looking at n-grams from the corpus, and

would like to obtain an embedding of d features for each word in the dictionary).

This will be used to input the network the current n-gram representation.

33

� An hidden sigmoid layer of 100 hidden units.

� An output layer of 1 neuron - this will be used to calculate the score for this

n-gram.

� Complete deep network The complete deep learning network computation is as

follows:

� Input: G = (w1, ..., wn) - a valid n - gram from the corpus.

� Algorithm:

* Obtain a random word w̃ from the dictionary to create the corrupt n-gram

G̃ = (w1, ..., wn−1, w̃)

* Pass G through the embedding dictionary to receive emb(G), concatenate

the vectors to receive a d · n length vector - pass this vector through the

Language model network to obtain a score SG.

* Perform the same operations on G̃ to obtain SG̃

* Backpropogate the error in formula (4.1) through through the Language

model network to obtain an error elm ∈ Rd·n at its input nodes.

* split elm to n vectors: (elm1
, ..., elmn

), where elmi
∈ Rd

* backpropogate elmi through the appropriate embedding dictionary item (e.g,

wi) and update wi's embedding.

This algorithm is run for every n-gram in the corpus.

5.3.2 Binarizing Parse Trees

5.3.2.1 Overview

Neither constituency parse trees nor dependency parse trees are necessarily binary, as seen

in the examples shown in Chapter 4. This presents a problem if one wishes to perform

autoencoding of those parse trees. This is due to the fact that the autoencoding of a tree

structure representation of data requires a �xed size number of sons for each node. This

limitation is a derivation of the �xed size limitation of neural networks, as stated in section

5.2.1.

Therefore, in order to be able to autoencode parse tree of both formats, some sort of �bina-

rization� process of each format needs to be formulated.

5.3.2.1.1 Input The �ltered n-grams mentioned in section 5.3.1 are pre parsed (using

Goldberg's parser [18]), which yields a parse tree. This parse tree is further processed to

replace the leaves (the original words) with their corresponding embedding. That is, each

leaf wi ∈ (w1, ..., wn) is preprocessed to obtain emb(w1). Thus the input of this stage is a

parse tree T whose leaves were changed to the corresponding embedding.

34

Figure 5.2: Constituency Binarization Paraphrasing Example

Figure 5.3: Dependency Binarization Paraphrasing Example

5.3.2.1.2 Output A binary tree representing the same information as T is output.

5.3.2.2 Binarization of Constituency Parse Trees

The binarization of constituency parse trees is done in a rather simple approach, when

compared with binarization of dependency parse trees. This is due to the fact that the

words of the original sentence are already present in the tree leaves. Intuitively, binarization

of such tree T over n nodes, is generating for each node which has m > 2 sons � a hierarchy

of sons which introduces O(logm) new synthetic nodes, each of which having only two sons.

The obvious setback with this approach is the increase in the size of the parse tree by a

factor of log(n). Figure 5.2 revisits Figure 4.5, this time the trees are binarized. Notice the

number of synthetic nodes inserted into the trees � these are marked to indicate the pair of

sons which were originally at that level of the tree.

35

5.3.2.3 Binarization of Dependency Parse Trees

The binarization of dependency parse trees is not an intuitive task, in contrast to binarization

of constituency parse trees. No known method was found to propose an algorithm for such

binarization. There are several special features that would be desired from the parse tree,

output by a binarization algorithm for this task:

� The words of the sentence must appear only at the nodes of the tree, as opposed to

the general de�nition of dependency parse trees (which was given at chapter 4). This

is due to the fact that we employ autoencoding on this tree.

� Keep the head-dependency relation embedded in the format of the tree.

� Linear ordering of the leaves.

� Keep high nodes in the original dependency tree also high on the binary tree. This

requirement is due to the fact that higher nodes in the parse tree are more likely to

be encoded better. Since they are involved in less encodings, less noise is added along

their way to the �nal encoding of the root of the tree. Naturally, it is desired that

primary notions in the sentence (such as the head of relations), be encoded better.

Examples of the binary trees output by this process appear in 5.3 (again, a revision of Figure

4.6). Notice the added syntactic leaves, marked with a running index (the index only for

convenience of reference, and does not mark any other information encoded in that node).

It can be seen that in this binary example of a paraphrase pair, transformed from dependency

relation, we can still see the matching subtrees across the pair, as was discussed in section

4.4.2.

5.3.3 Learning to Parse on Embeddings Using Autoencoders

5.3.3.1 Overview

This section explains the process of training autoencoders on binary parse trees. The leaves

of the trees are replaced with the embedding of an input sentence, as was described in the

previous section. The target of this is to generate �xed size encodings of constituents of the

parse trees. Later stages can use this encoding of a subtree as a way to reference a subtree

of variable size using a �xed size vector encoding.

5.3.3.1.1 Input The binary parse trees which were the output of section 5.3.2 serve as

input for this stage.

5.3.3.1.2 Output An autoencoder encoding from 200 to 100 features is trained on the

set of all input binary n-grams parse trees. This autoencoder is later used to obtain �xed size

36

Figure 5.4: Encoding of a Binary Dependency Tree

representations of higher nodes in the parse tree, these serve in giving a metric to compare

inner nodes between a given test pair.

5.3.3.2 Training Process

For an input binary tree T , the process of training is as follows:

� Initialize an autoencoder network which encodes from 2d to d (and naturally decodes

back from 2d to d), as was described in 5.2.3

� Encode each pair of sibling leaves of the parse tree, and put the result encoding in the

father.

� Continue by encoding inner nodes of which both sons were encoded.

� At the end of this process, all nodes of the parse tree contain an encoding of its spanned

subtree.

Along this process many encodings are performed, use these encodings to train the autoen-

coder, again as described in 5.2.3. Thus at the end of this process we obtain an autoencoder

which is trained in e�ciently encoding a parse tree in such a form to best reconstruct it

during decoding. Since we parsed along a parse tree of linguistic meaning, the root of sub-

tree contain encoding of the constituent they represent, hopefully encompassing interesting

features of the constituent, in a �xed size notation.

Figure 5.4 shows an example of such an encoding. Dotted edges (u1, v), (u2, v) mark that

the encoding of u1u2 will appear at the data of v.

37

5.3.4 Tree Matching

5.3.4.1 Overview

As described in section 5.2.4, tree matching is a new concept described in this work. It aims

at formulating a paraphrase pair in terms of a matching function between subtrees of the

parse trees, in which the words were changed for their embedding, binarized, and autencoded.

Upon this matching a score is de�ned. This score tries to predict the probability of the given

pair being in paraphrase relation, based on the given matching. The hypothesis claims that

the problem of paraphrase identi�cation reduces to �nding a best match between two given

texts' parse trees, and deciding on a score threshold below which the texts are considered

to be paraphrases.

5.3.4.1.1 Input A parsed, binarized, and autoencoded pair of texts is the input of this

section.

5.3.4.1.2 Output The score of theminimal match is output. On a given training set, a

classi�er can then be trained to �nd a threshold in the data below which pairs are considered

to be paraphrases. Thus yielding paraphrase identi�cation.

5.3.4.2 Finding Tree Matching

Since tree matching is an NP-Complete problem, we use a very simple heuristic. Exhaus-

tively searching the possible matches and recording the best one found. In order to reduce

this exponential run time, we stop the search after a prede�ned number of iterations, and

output the minimal match found thus far. Figure 5.5 depicts a possible (and probably de-

sired) match - nodes framed in box of the same color are matched against each other. It

can be seen that this matching in accordance with the de�nition given for tree matching at

section 5.2.4.

5.4 Experiments

This section describes the experiments which were conducted in order to assess the validity

of the hypotheses that were introduced in the course of this work. These are targeted to

test the separate contribution of each of the sections of the work.

5.4.1 Testing Embeddings

Collobert & Weston embeddings were shown to enhance the performance of many NLP tasks

in English [13, 8, 38]. Although in the original design [13] the embeddings were designed to

change during the simultaneous supervised training process of the NLP tasks (thus exploiting

the training process of one task to serve another's), it has been shown that these embeddings

38

Figure 5.5: Possible Match of a Paraphrase Pair

may as well serve as an o�-the-shelf �plug-in� enhancer for many distinct NLP tasks [38].

This approach takes an already proven system for a common NLP task which treats words

simply as index to a lexicon (thus using a very sparse representation), and exchanging its

representation for words with the corresponding embedding (thus using a more condensed,

linguistically based, encoding).

We test the �plug in� approach, testing the improvement over the task of POS tagging.

5.4.1.1 Improving POS tagging

We test a Conditional Random Field (CRF) [24, 35] model performance, when changing the

words indexes for our Hebrew embeddings over labeled data. We compare against baseline

of using the same CRF model without the embeddings, and against state of the art Hebrew

POS tagging [5].

5.4.2 Testing Tree Matching as Paraphrase Indicator

In order to test if tree matching reduction of paraphrasing is indeed a a valid hypothesis,

we test its validity using a common train-test partition of a paraphrase corpus.

5.4.3 Testing Dependency vs Constituency Parse Trees

As was discussed throughout the work, there are several possible de�nitions of parse trees.

We have focused on dependency and constituency parse trees. In addition we have de�ned

a binarization on both formats, which is an obligatory stage in order to later autoencode

the trees. In order to compare both formats and their respective binarization, we run the

previous tests both on binary dependency and binary constituency parse trees.

39

Chapter 6

Experimental Setting and Results

This chapter gives practical information regarding the corpora on which experiments are

conducted, and the results obtained.

6.1 Experimental Setting

This section describes in detail the corpora used for training models in this work, by means

of its statistical distribution and its size.

6.1.1 Embeddings Generation Corpus

The corpus used for the embeddings generation is a large corpus of the news domain. The

details of this corpus are given in table 6.1. This corpus is divided into 5 sections ordered

by complexity (how common the words are).

6.1.2 Autoencoding of Parse Trees Training Corpus

The same corpus described in Section 6.1.1 is used for the training of parse trees. Since this

corpus is formed from natural language sentences, we can parse it and use it as a training

corpus for sentences, as opposed to the previous section which took it as a source for 5-grams.

Table 6.1: Size of the Di�erent Corpora used for Embeddings computation

Dictionary Size (in tokens)

Full 131M

5K 63.6M

10K 110.3M

40

6.1.3 Labeled Paraphrase Corpus

This corpus is used for testing the proposed method for paraphrase identi�cation in a su-

pervised manner. It is composed of matched headlines from leading news sites. The size of

the overall news wire corpus, before searching for paraphrases is of size of about 1.4 Million

news headlines.

6.2 Results

Each of the following sections deals with the expected results of a single experiment:

6.2.1 Embeddings

This experiment sets out to test the improvement of using the generated embeddings on

a general NLP task. The task we test is POS tagging. We use the CRFSuite package

[28] to train and test a POS classi�er, with and without embedding features, and record

the embeddings improvement over the test set. We start by testing the equivalent C&W

embeddings on the task of English POS tagging, to achieve baseline expected enhancement

measures, and continue by testing the same on Hebrew POS tagging task.

6.2.1.1 Annotations

These are the notations used throughout this section when describing CRF feature sets:

� w[i] - The word located at the i'th location within a given sequence.

� l[i] - The POS tag of w[i].

� e[i][j] - The j'th embedding feature of w[i].

6.2.2 English POS Tagging

6.2.2.1 Corpus

The dataset used for English is the CoNLL 2000 dataset. This dataset consists of approxi-

mately 220K words (organized in 9K sequences) for training, and 50K words (organized in

2K sequences) for testing. Each word is tagged for POS and BIO tags.

6.2.2.2 Experiments

Upon this dataset, two experiments were run. The results are summarized in Table 6.2.

Following is a description of each of the experiments:

Baseline: This experiment aims at setting baseline results for the next experiment. The

feature set for tag located at position t within a sequence is:

41

� w[t− 2]

� w[t− 1]

� w[t]

� w[t + 1]

� w[t + 2]

� w[t− 1]|w[t]

� w[t]|w[t + 1]

� l[−1]

� A special start | end of sequence symbol.

CW: This experiment aims at testing the improvement induced by Collobert and Weston

(CW) embeddings upon the baseline results. The CRF features for word located at

index t within a sequence were those of previous experiment, in addition to:

� e[t][0]− e[t][99]

These features were added where embeddings exists for w[t]

Table 6.2: Experimental Results for English POS Tagging

Experiment Acc F1

Baseline 0.928 0.870

CW 0.961 0.926

6.2.2.3 Discussion

Turian [38] did not include this task in his article, while C&W did - although in their

experiment the embeddings changed in the course of the POS training, as part of the deep

learning architecture. It seems that C&W word embeddings are capable of signi�cantly

improving (3% in accuracy, and 6% in F1) POS tagging task also as a CRF plug-in enhancer.

6.2.3 Hebrew POS Tagging

6.2.3.1 Corpora

Three corpora were used to measure the improvement of word embeddings. TB1 and A7

are two di�erent corpora, while All is the concatenation of them. All of these were tagged

for POS and segmented. The size statistics of these datasets are shown in table 6.3. A tag

histogram is shown in �gure 6.1.

42

Table 6.3: Hebrew corpora statistics. Values show size in #tokens and #sequences

Corpus Training Testing

TB1 91K / 4K 18K / 750

A7 104K / 5K 21K / 1K

All 195K / 9K 40K / 2K

Figure 6.1: Tag Distribution Histogram

6.2.3.2 Analysis of Corpora

Several experiments were conducted to measure relevant statistics with regards to these

corpora. For comparison, the same statistics were measured also against the CoNLL corpus.

6.2.3.2.1 Unknown Tokens This experiment measures the percentage of occurrences

of tokens for which there is no embedding available. Results are given in Table 6.4. Note that

the unknown words rate is much higher in the Hebrew corpora than in English (re�ection of

the larger number of word forms in Hebrew than in English, because of the rich morphology

in Hebrew, and the smaller corpus sizes that we have available).

Table 6.4: Unknown Token Percentage

Corpora Train Test

TB1 27.334 % 27.723 %

A7 21.604 % 21.473 %

All 24.324 % 24.114 %

CoNLL 2.0 % 2.362 %

6.2.3.2.2 Ambiguous Tokens This experiment measures the percentage of occurrences

which appear in the corpora with several di�erent POS tags. The results are grouped by

the number of di�erent possible tags for a single token. Results, in the form of an histogram

per corpus, are shown in �gure 6.2. A rougher division can part each corpus entry as either

43

Figure 6.2: Ambiguous Tokens Distribution Histogram

ambiguous (meaning, a token which has more than one tag available), and un-ambiguous

(meaning, there is only one tag available for this token). This division statistics is available

in table 6.5.

Table 6.5: Percentage of Ambiguous Tokens

TB1 A7 All CoNLL

66.24 % 32.67 % 69.18 % 32.71 %

Note again that ambiguity is much higher in Hebrew than in English (69% vs. 33%) and

that ambiguity on All is higher than on each sub-corpus because words that appear with a

single tag in each subcorpus can appear with two distinct tags in the combination.

6.2.3.3 Experiments

Several tests were ran to achieve baseline results. These ran on each of the corpora described

above. Following the baseline results, and similar to the course taken in Section 6.2.2,

embeddings were added as features to test their improvement.

Baseline: In addition to using a similar feature set to that described in 6.2.2.2, another

dimension of the number of previous tags was added. For example, when the number

of previous tags is 2, the following features are added: l[−2], l[−1]. These experiments

ranged from zero previous tags up to three previous tags, thus, in total, 12 experiments

were ran. Their results are summarized in Table 6.6 and graphically in Figures 6.3

and 6.4.

HebEmbeddings: Upon each of these corpora, a CRF training session with feature sets

similar to those of Section 6.2.2.2 (with one previous tag, as was done for English

dataset), was conducted. The embedding features e[t][0], ..., e[t][99] are the embed-

44

Table 6.6: Hebrew Baseline Results. Values show Acc / F1

Num of previous tags 0 1 2 3

TB1 0.867 / 0.725 0.879 / 0.735 0.881 / 0.740 0.881 / 0.748

A7 0.909 / 0.696 0.910 / 0.701 0.910 / 0.703 0.910 / 0.698

All 0.861 / 0.644 0.866 / 0.662 0.868 / 0.660 0.869 / 0.664

Figure 6.3: Hebrew Baseline Accuracy Percentage on Di�erent Corpora and Feature Set

Figure 6.4: Hebrew Baseline F1 Percentage on Di�erent Corpora and Feature Set

45

ding calculated during the course of this work and available online [37]. Results are

summarized in Table 6.7

Table 6.7: Hebrew Embeddings Results. Values show Acc / F1.

without embeddings with embeddings

TB1 0.879 / 0.735 0.900 / 0.804

A7 0.910 / 0.701 0.940 / 0.821

All 0.866 / 0.662 0.880 / 0.723

6.2.3.4 Discussion

Several observations can be made, based on the Hebrew experiments:

� In all cases, the Hebrew embeddings enhanced performance, both in accuracy measure

(1% - 3%), as well as in F1 measure (6% - 12%). This is in accordance with the

previously shown English results.

� There is less improvement found in TB1 and All corpora (see table 6.7). This can

be associated with the fact that the maximum number of unknown tokens is found in

TB1 (see table 6.4). In fact, there is a correlation between the percentage of known

tokens and the rate of improvement gained by the addition of embeddings.

� There is a drop in performance when testing the All corpus, in comparison to testing

its two components. The drop is mainly in F1 measure. We hypothesize this is due to

di�erent conventions and guidelines used for tagging POS of TB1 and A7 corpora. A

supporting evidence for this can be the fact that the percentage of ambiguous tokens

reaches its maximum in All corpus (see table 6.5), this is due to the fact that about

7K non-ambiguous tokens in TB1 and A7 receive di�erent tags in both corpora - thus

rendering them ambiguous in All.

6.2.4 Paraphrasing

6.2.4.1 Corpus

A corpus of 1.6K pairs of sentences was collected from matching news articles from di�erent

Hebrew news sites. The average sentence length was 9.6 words. These pairs were manually

annotated by two human taggers as being either Paraphrase, Partial Paraphrase, or Nega-

tive, according to the Tagging Guidelines which appear as an Appendix.

The corpus can be divided into three categories according to the human tagging:

46

� AGREE - Pairs on which both taggers gave the exact same tagging.

� MISMATCH - Pairs on which taggers did not agree, yet one of the taggers tagged as

"Partial Paraphrase�.

� DISAGREE - Pairs which do not fall to any of the above categories, i.e pairs on which

human taggers tagged the opposite.

The distribution of the corpus according to these terms is shown in table 6.8.

Table 6.8: Category Distribution Over the Paraphrase Corpus

Category Percent

AGREE 70%

MISMATCH 29%

DISAGREE 1%

A couple of examples of pairs of sentences which belong to the DISAGREE category

follow:

I The Saudi stock market had lost 6.8% vs The Saudi stock market had lost

6.78%

6.87 % - a dgpv zicerqd dqxead �

6.8 % - a dgpv zicerqd dqxead �

II The High Court to the State Attorney: Explain the mistakes done in the

dealing with Galant's lands vs The High Court to the State Attorney: Ex-

plain the correction of mistakes done in the dealing with Galant's lands

hplb zerwxwa letiha zeierhd z` xaqd : y"nreil u"ba �

hplb zerwxw zyxta zeierhd oewiz lr xaqd : y"nreil u"ba �

When taking into account only pairs which belong to the AGREE category, we get the

paraphrase corpus which consists of 1273 pairs. The tag distribution over this corpus is

given in Table 6.9. The following experiments are conducted over this corpus.

Tag Percent

Paraphrase 43.3%

Partial 25.2%

Negative 31.5%

Table 6.9: Category Distribution Over the Paraphrase Corpus

47

6.2.4.2 Paraphrase Identi�cation

We tested the Tree Matching algorithm described in this work over the corpus described

in the previous section. Best results were obtained using dependency parsing, and after

training the classi�er for 50 epochs. The results are shown in Table 6.10

Table 6.10: Tree Matching Algorithm Performance

Parse Type Performance(ACC/F1)

Dependency 74.38 / 80.35

Constituency 69.20 / 74.83

6.2.4.3 Discussion

The results are compatible with the obtained state of the art results for the English task

(about 2% lower), which is a positive result in applying Hebrew adapted paraphrase identi�-

cation algorithms. The decrease in performance when using constituency trees can perhaps

be explained due to the much larger trees which are produced by this parsing method.

Such an increase in size can produce more noise to the system, and a consecutive drop in

performance.

48

Chapter 7

Conclusion

The objective of this work is to research the �eld of paraphrasing in Hebrew, providing �rst

results in a �eld in which English research has gained a lot of interest and focus in recent

years. The focus was set on the task of paraphrase identi�cation.

We developed a method to identify if an input pair is in a paraphrase relationship, via

adapting English state of the art algorithms, and providing modi�cation of these.

The datasets we use are:

� A large news wire corpus, preprocessed with POS information, and segmentation.

� A large corpus of Hebrew paraphrases, formed in a parallel corpus of news wire head-

lines. This corpus was obtained in an unsupervised manner, by scraping major Hebrew

news sites.

We run several experiments on these datasets, aiming at proving the hypotheses raised

during the course of this work. The main experiment aims at assessing the validity of the

proposed system as Hebrew paraphrase identi�er. This consists of splitting the corpus of

paraphrases in a train-test split and checking it performance via the standard statistical

metrics.

The results indicate that Hebrew paraphrase identi�cation is a feasible task, when com-

paring against result in the English equivalent �eld.

The main contributions of this work is:

� Showing the feasibility of paraphrase identi�cation in Hebrew, and establishing �rst

results close to state of the art levels in English.

� Providing Hebrew resources for later paraphrasing tasks (a paraphrase corpus), as well

as for more general Hebrew NLP tasks (Collobert and Weston embeddings as a plug

in enhancer).

As future work, we would like to further the research in the following optional directions:

49

� Explore the usage of the products of this work as tools for other paraphrase related

tasks, such as paraphrase generation, and textual entailment.

� Test the paraphrasing identi�er as a component in a more complex system of NLP or

NLG, such as automatic multi-text text summarization, text generation system which

is targeted for a speci�c audience.

� Use the word embeddings produced in this work in other NLP tasks.

50

Bibliography

[1] Microsoft research paraphrase corpus, http://research.microsoft.com/en-us/.

Technical report.

[2] Textual entailment search pilot, guidelines. Technical report, 5th Textual Entail-

ment Challenge, 2009.

[3] Knowledge base population validation task, guidelines. Technical report, 7th

Textual Entailment Challenge, 2011.

[4] Main task and novelty detection subtask, guidelines. Technical report, 7th Textual

Entailment Challenge, 2011.

[5] Meni Adler. Hebrew Morphological Disambiguation: An Unsupervised Stochastic

Word-based Approach. PhD thesis, Ben-Gurion University of the Negev, Beer-

Sheva, Israel, 2007.

[6] Regina Barzilay and Kathleen R. Mckeown. Extracting paraphrases from a par-

allel corpus. In In Proc. of the ACL/EACL, pages 50�57, 2001.

[7] Yoshua Bengio. Learning deep architectures for ai. Foundations and Trends in

Machine Learning, 2(1):1�127, 2009.

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Cur-

riculum learning. In ICML, page 6, 2009.

[9] Eugene Charniak and Mark Johnson. Coarse-to-�ne n-best parsing and maxent

discriminative reranking. In ACL. The Association for Computer Linguistics,

2005.

[10] Noam Chomsky. Three models for the description of language. IRE Transactions

on Information Theory, 2:113�124, 1956.

[11] E V Clark.

[12] Eve V. Clark. On the logic of contrast. Journal of Child Language, 15:317�335,

1988.

51

[13] Ronan Collobert and Jason Weston. A uni�ed architecture for natural language

processing: deep neural networks with multitask learning. In Proceedings of the

25th international conference on Machine learning, ICML '08, pages 160�167,

New York, NY, USA, 2008. ACM.

[14] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel P. Kuksa. Natural language processing (almost) from

scratch. CoRR, abs/1103.0398, 2011.

[15] Gil Diesendruck. The principles of conventionality and contrast in word learning:

An empirical examination. Developmental Psychology, 41(3):451�463, 2005.

[16] Christiane Fellbaum, editor.WordNet: An Electronic Lexical Database (Language,

Speech, and Communication). The MIT Press, illustrated edition edition, May

1998.

[17] William A. Gale and Kenneth W. Church. A program for aligning sentences in

bilingual corpora. Computational Linguistics, 1993.

[18] Yoav Goldberg and Michael Elhadad. Easy-�rst dependency parsing of modern

hebrew. In Proceedings of the NAACL HLT 2010 First Workshop on Statistical

Parsing of Morphologically-Rich Languages, pages 103�107, Los Angeles, CA,

USA, June 2010. Association for Computational Linguistics.

[19] R. Harman and University of Massachusetts Amherst. Education. Systemic Func-

tional Linguistics and the Teaching of Literature in Urban School Classrooms.

University of Massachusetts Amherst, 2008.

[20] Chikara Hashimoto, Kentaro Torisawa, Stijn De Saeger, Jun'ichi Kazama, and

Sadao Kurohashi. Extracting paraphrases from de�nition sentences on the web.

In ACL, pages 1087�1097, 2011.

[21] Graeme Hirst. Paraphrasing paraphrased. Technical report, University of Toronto,

2003.

[22] R. Karp. Reducibility among combinatorial problems. In R. Miller and

J. Thatcher, editors, Complexity of Computer Computations, pages 85�103.

Plenum Press, 1972.

[23] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In IN

PROCEEDINGS OF THE 41ST ANNUAL MEETING OF THE ASSOCIATION

FOR COMPUTATIONAL LINGUISTICS, pages 423�430, 2003.

[24] John D. La�erty, Andrew McCallum, and Fernando C. N. Pereira. Conditional

random �elds: Probabilistic models for segmenting and labeling sequence data.

52

In Proceedings of the Eighteenth International Conference on Machine Learning,

ICML '01, pages 282�289, San Francisco, CA, USA, 2001. Morgan Kaufmann

Publishers Inc.

[25] Prodromos Malakasiotis and Ion Androutsopoulos. A generate and rank approach

to sentence paraphrasing. In EMNLP, pages 96�106, 2011.

[26] Marie-Francine Moens and Stan Szpakowicz, editors. ROUGE: A Package for

Automatic Evaluation of Summaries, Barcelona, Spain, July 2004. Association

for Computational Linguistics.

[27] Joakim Nivre. Dependency grammar and dependency parsing. Technical report,

Växjö University: School of Mathematics and Systems Engineering, 2005.

[28] Naoaki Okazaki. Crfsuite: a fast implementation of conditional random �elds

(crfs), 2007.

[29] Noam Ordan, Bar Ilan, Noam Ordan, and Shuly Wintner. S.: Hebrew wordnet:

a test case of aligning lexical databases across languages. International Journal

of Translation, 19:39�58, 2007.

[30] Anthony Pick. Discourse and Function. A Framework of Sentence Structure.

http://www.discourseandfunction.com, 2009.

[31] Jordan B. Pollack. Recursive distributed representations. Arti�cial Intelligence,

46:77�105, 1990.

[32] Chris Quirk, Chris Brockett, and William Dolan. Monolingual machine trans-

lation for paraphrase generation. In In Proceedings of the 2004 Conference on

Empirical Methods in Natural Language Processing, pages 142�149, 2004.

[33] Richard Socher and Eric H. Huang and Je�rey Pennington and Andrew Y. Ng

and Christopher D. Manning. Dynamic Pooling and Unfolding Recursive Autoen-

coders for Paraphrase Detection. In Advances in Neural Information Processing

Systems 24. 2011.

[34] Raul Rojas. Neural Networks: A Systematic Introduction. Springer, 1 edition,

July 1996.

[35] Fei Sha and Fernando C. N. Pereira. Shallow parsing with conditional random

�elds. In HLT-NAACL, 2003.

[36] Richard Socher, Je�rey Pennington, Eric H. Huang, Andrew Y. Ng, and Christo-

pher D. Manning. Semi-Supervised Recursive Autoencoders for Predicting Senti-

ment Distributions. In Proceedings of the 2011 Conference on Empirical Methods

in Natural Language Processing (EMNLP), 2011.

53

[37] Gabriel Stanovsky. Hebrew cw embeddings for plugin enhancment -

http://www.cs.bgu.ac.il/ gabriels/paraphrasesite/main.htm, 2012.

[38] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple

and general method for semi-supervised learning. In Proceedings of the 48th An-

nual Meeting of the Association for Computational Linguistics, ACL '10, pages

384�394, Stroudsburg, PA, USA, 2010. Association for Computational Linguistics.

54

Appendix A

Proof of Tree Matching NP

Completeness

This section provides a proof for the NP completeness of tree matching as described in

section 5.2.4. We will do this by showing that

I Tree Matching ∈ NP

II Positive SubsetSum ≤p Tree Matching

Since Positive SubsetSum (PS) is an NP-Complete problem (is a variation of one of Karp's 21

NP-Complete problems[22]), proving these yields that Tree Matching (TM) is NP-Complete.

We continue by formally de�ning the PS decision problem, and the TM decision problem.

De�nition Given a set of k positive integers S = (n1, ..., nk) and a target positive integer

t, the PS decision problem is �nding if there is a subset of S which sums exactly to t.

Formally:

PS = { ({n1, ..., nk} ∈ Nk, t ∈ N) | ∃ T ⊆ [1, k] :
∑
j∈T

nj = t }

De�nition Given a two binary trees T1, T2 which each nodes contain a 100 dimensional

vector of numbers, and a target positive integer t, the TM decision problem is �nding if there

is a Tree Matching M of T1, T2 for which S(M) = t. (Recall section 5.2.4 for de�nitions)

Formally:

TM = { ((T1, T2), t ∈ N) | ∃M a match of T1, T2 : S(M) = t }

Proof. Following these de�nitions we go on to prove that:

I TM ∈ NP A straight forward approach can yield a simple linear veri�cation algorithm

which receives a pair of trees (T1, T2), a target integer t, and a match M . The algorithm

will compute the score of M (denoted S(M)) and will output �YES� i� S(M) = t.

55

APPENDIX A. PROOF OF TREE MATCHING NP COMPLETENESS 56

II PS ≤p TM

Reduction: We will build a function f that receives (S = {n1, ..., nk} ∈ Nk, t ∈ N) and

returns ((T1, T2), t′ ∈ N) for which:

(S, t) ∈ PS ⇔ ((T1, T2), t′) ∈ TM

f produces its output in the following manner:

1. t′ ← t

2. T1 is a binary tree which complies to:

* Contains k leaves, marked l1, ..., lk.

* The fathers of all leaves have only one son. Mark them as p1, ..., pk.

* All inner nodes contain ~0 as their 100 dimensional vector.

* li contains (ni

2 , 0, ..., 0) as its 100 dimensional vector.

2. T2 is a binary tree which complies to:

* Contains k leaves, marked r1, ..., rk.

* All inner nodes contain (0, t, 0, ..., 0) as their 100 dimensional vector.

* ri contains ~0 as its 100 dimensional vector.

Correctness:

1. (S, t) ∈ PS ⇒ ((T1, T2), t′) ∈ TM

Assume (S = {n1, ..., nk}, t) ∈ PS ⇒ ∃ T ⊆ [1, k] : Σi∈T ni = t

We will de�ne a matching M of T1, T2:

� ∀i ∈ T : (li, ri) ∈M

� ∀i /∈ T : (pi, ri) ∈M

It is clear that M is indeed a Match, since for each leaf we either add it (�rst case),

or its father (second case). Thus, we calculate the score of the match:

S(M) = Σi∈T ||li, ri|| · 2 + Σi/∈T ||pi, ri|| · 3 =

= Σi∈T
ni

2
· 2 + Σi/∈T 0 · 3 =

= Σi∈T ni = t = t′

Therefore ((T1, T2), t′) ∈ TM

2. ((T1, T2), t′) ∈ TM ⇒ (S, t) ∈ PS

Assume ((T1, T2), t′) ∈ TM ⇒ ∃M a Match, for which S(M) = t′ = t.

We will use a lemma that will be proven later that M must be formed of exactly k

pairs of the form (∗, ri) (otherwise, by the construction of the trees, the score must be

greater).

APPENDIX A. PROOF OF TREE MATCHING NP COMPLETENESS 57

Following the lemma it is clear that M = M1

⋃
M2, where M1 contains only pairs of

the form (li, rj) and M2 = M \M1 = { (xi, rj) ∈M : xi /∈ {l1, ..., lk} }. Thus:

t = S(M) = Σ(li,rj)∈M1
||li, rj || · 2 + Σ(xi,rj)∈M2

||xi, rj || · 3 =

= Σ(li,rj)∈M1
||li, rj || · 2 = Σ(li,rj)∈M1

ni

We see there is a subset of S which sums to t ⇒ (S, t) ∈ PS

Lemma A.1 S(M) = t ⇒ M must be formed of exactly k pairs of the form (∗, ri)

Proof. Assume by negation that there exists a match M of T1, T2, for which S(M) = t and

that there exists a pair (x, y) ∈M s.t

x ∈ T1, y ∈ T2, y /∈ {r1, ..., rk}

Mark as c > 2 - the number of spanned leaves by x and y.

Note, that by the formation of the trees, we get ||x, y|| =
√

(t− 0)2 + ∗ ≥ t

Thus:

S(M) ≥ ||x, y|| · c ≥ ||x, y|| · 2 ≥ 2t > t

In contradiction with the assumption that S(M) = t .

Appendix B

Paraphrase Tagging Guidelines

B.1 Goal

The goal of tagging is to �nd sentences and parts of sentences which convey identical, or

near-identical, information, articulated in di�erent forms.

B.2 Rules for Tagging

Given two sentences S1, S2, the annotator should decide between the following options:

B.2.1 Paraphrase

the pair would be considered a paraphrase in the following case:

1. A human who fully accepts S1, must therefore accept S2 as a whole.

2. The same holds for the second direction as well. Namely, accepting S2, must yield

acceptance of S1.

B.2.1.1 Restrictions

� The acceptance can derive also by former knowledge, yet it must not be based solely

on it. (examples 1,2)

� The pair will be considered as a paraphrase, when there is su�cient con�dence that

they indeed convey the same information. (example 3)

� Given a pair for which their meaning is ambiguous (for example - there is not enough

information to be certain regarding the identities which appear in them). One must

assume that the ambiguity is solved in such a way that the pair relate to same incident.

(example 4)

58

APPENDIX B. PARAPHRASE TAGGING GUIDELINES 59

� The pair should be judged from a timeless point of view. Namely, if the pair relate

the same information, yet treat it from a di�erent point in time - it should be tagged

as paraphrase.

� The pair should be judges from a location-less point of view. Namely, if the same

incident is reported, yet it is regarded from a di�erent relative point of view, it should

be considered paraphrase.

� If one of the sentences, or both of them, contain additional information, or contradic-

tory information, the pair should not be tagged as a paraphrase.

B.2.2 Partial Paraphrase

If S1, S2 are not paraphrases, by the de�nition given above, yet certain clauses can be

removed to form a paraphrase, then S1, S2 should be tagged as partial paraphrases. The

additional clauses should be annotated as such. (example 6)

B.2.3 Negative

A catch-all rule. If S1, S2 do not fall under any of the previous tags, then they should be

tagged as Negative, meaning they do not convey any shared information.

B.3 Examples

1. S1 - .diqex mr htp xgq mkqdl dribd oiq

China has reached an oil trade contract with Russia

S2 - .diqex mr htp xgqn mkqd lr dnzg mlera zqlke`nd dpicnd

The world most populated nation has reached an oil trade contract with Russia

Tag: Paraphrase.

(It is of common knowledge that China is the world most populated nation)

2. S1 - .diqex mr htp xgq mkqdl dribd oiq

China has reached an oil trade contract with Russia

S2 - .mlera zqlke`nd dpicnd `id oiq

China is the world most populated nation.

Tag: Negative.

(Although the second sentence is true, it does not follow from the �rst, nor does the

second derives the �rst).

3. S1 - .dixeqa zexixbyd dxbq a"dx`

USA has closed its embassy in Syria.

APPENDIX B. PARAPHRASE TAGGING GUIDELINES 60

S2 - .dixeqn dxixby z` dxifgd a"dx`

USA has called its ambassador back from Syria.

Tag: Paraphrase.

(It is very probable to assume that closing the embassy yields calling back the ambas-

sador, and vice versa)

4. S1 - .dixeqa mipexg`d mirex`d z` dxwiq zyxd

The network has covered latest events in Syria.

S2 - .dixeqa zepexg`d zeieygxzdd lr dgeeic dxif'bl` zyx

Al Jazira network has passed reports of the latest happenings in Syria.

Tag: Paraphrase.

(It should be assumed that the network mentioned in the second sentence is the same

network mentioned in the �rst sentence)

5. S1 - .oey`x meia ray x`al ewd z` ziayz zakxd

Trains will not work on the line to Beer Sheva this Sunday, due to strike.

S2 - .ray x`al ewd z` xgn wiqtz zakxd

Trains will not work on the line to Beer Sheva tomorrow, due to strike.

Tag: Paraphrase.

(Although the pair convey the same information from di�erent points in time, it should

be regarded as paraphrase)

6. S1 - .ux`l xfg okn xg`le ,iqexd ezinr mr ybtp edipzp oinipa

Benyamin Netanyahu has met with his Russian counterpart, an later returned to Israel.

S2 - .miycgd milerd ziibeq z` eipta oiive ,iqexd eliawn mr crep edipzp oinipa

Benyamin Netanyahu has met with his Russian counterpart, and mentioned to him

the issue of Israeli immigrants from Russia.

Tag: Partial Paraphrase.

(Without the marked parts, the pair consists a paraphrase)

7. S1 - .mixirvd miqiibznd ipta m`p wxa ced`

Ehud Barak spoke in front of new army recruits.

S2 - .d`ad divpcwl ezecnren yibdl hilgd wxa ced`

Ehud Barak decided to run for the next elections.

Tag: Negative.

(Both sentences do not convey the same information, nor can any clauses can be

removed from them so that they do)

