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Chapter 1

Introduction

The topic of this research is the processing and generation of natural language paraphrases
from an algorithmic point of view. Focusing mainly on the implication of adapting and
applying such algorithms to the Hebrew language.

Paraphrasing is the action of restating sentences or paragraphs using different sentence
structures or different choice of words, while keeping similar meaning. Paraphrases are used
by an author of a single text in order to elaborate on a given subject, to provide examples,
or to explain a topic by using a different approach while conveying the same message. When
comparing text written by different authors describing similar events, one will also find
occurrences of paraphrases, reflecting style differences between the authors.

Paraphrase identification is the task of determining whether two given texts stand in a
relation of paraphrasing. Paraphrase generation is the task of producing a paraphrase given
an original sentence.

While it is natural for native speakers to either paraphrase a given sentence or to deter-
mine if a given pair of text fragments are a paraphrase, an algorithmic formulation of the
tasks is quite challenging.

For example, the following two news snippets (dated from 14.11.11) from two different

News web sites can be considered paraphrases:
(2>Y1) Y2 RN INITN 22 PIDA TTW DY WINYUN NLIND NNN e

e A citizen and a guard took over a robber at the general post office in Beer-Sheva. (The

city name appears here as an abbreviation)
ENININN M) YAV NI INIT PID TITYD NN DTN JY YOINIVN NVIRM NNN e

e A citizen and a guard took over a man who tried to rob the post office in Beer-Sheva.



1.1 Formal Definitions

Recent research in the field of paraphrasing in English has yielded the formulation of the
following definitions [2][4]:

1.1.1 Textual Entailment

Given two text fragments A, B, determine if one could be inferred from the other. A will
entail B if a human being who trusts A, on all its parts, will consequently have to trust that
B is also true.

For example:
NOYPN MDON MY TN NI DIPIINNIY NP 2000 NIV YN YOP NNT e

Doron Katash joined the Panathinaikos team in 2000, and won the European cham-

pionship with it.
2000 TV NOYPN MINIA NNOY DIPM”INNIO NNNID e
The Panathinaikos team won the European championship in 2000.

For the comprehensive definition of textual entailment, see [4].

1.1.2 Paraphrase

Paraphrase is commonly defined as bidirectional textual entailment. For example, given two
text fragments (A, B), it could be said that A entails B and vice-versa. A few restrictions

upon these texts have been defined:

This bidirectional entailment can rely also on knowledge which is considered to be

commons:

PO DY IND DIDNY NYIN PO —

China has reached a trading agreement with Russia
PO DY IND DIDNY NN DY NOINNDN NP TN —

— The world most populated nation has reached a trading agreement with Russia

e Yet the entailment must not rely solely on prior knowledge:

7°0)7 DY IND DIDNY NYHN PO —
— China has reached a trading agreement with Russia

021¥2 NOIWNKN NPTHN NN PO

— China is the most populated nation.

A complete definition of Hebrew paraphrase is given in appendix B.



1.1.3 Related Shared Tasks

Following these definitions, several shared tasks have been defined and proposed to the

attention of the research community, amongst them:

- Novelty Detection [4], Given a fraction T of text and a corpus C - determine if T

contains new information with respect to C.

- Knowledge Base Population [3], Given a list of entities and a corpus C, extract values

for a pre-defined set of attributes (a.k.a. “slots”) corresponding to those entities.

1.1.4 Paraphrasing in Hebrew

We are not aware of previous effort in studying paraphrasing in Hebrew - either linguistically
or computationally. The closest effort has been that of [29] who have applied the technique of
MultiWordnet to construct an electronic thesaurus in Hebrew; the work does not specifically
address the task of paraphrasing detection or generation.

We expect that the specific properties of the Hebrew language — specifically the pos-
sibility to agglutinate function words (prepositions, conjunctions and articles) with other
words, the relatively free word order syntax, the productive noun-compounding mechanism
(smixut) and several productive word derivation mechanisms (verb constructions - binyanim)

— produces rich opportunities for paraphrasing.

1.2 Motivation

The tasks of generation and identification of paraphrases help in various Natural Language

Processing (NLP) fields, such as:

- Automatic Text Generation, data from a knowledge base can be expressed in a variety
of forms using paraphrases. The capability of producing text variability is important
for text generators to adapt the generated text to various target audience needs, by

varying the style of the text, its complexity and its level of detail.

- Automatic Summarization, while scanning through a document, paraphrases found in
text body could be detected, and then omitted, in order to provide a shorter version
of the document. This is particularly important in the context of multi-document
summarization: in this task, several similar documents (describing the same events)
are taken as input, and we expect them to contain many paraphrases. The summary
of the cluster of documents should avoid repetitions and contain only one instance of

each group of paraphrases from the source documents.

- Automatic Construction of Thesaurus, identifying paraphrases from freely occurring

text in conjunction with exploiting knowledge of the sentence structure can be used



to yield a bank of Hebrew words which are, with high probability, synonyms. The
result of such analysis would lead to automatic construction of a thesaurus in Hebrew,

similar to the Wordnet [16] resource available in English.



Chapter 2

Research Questions and Objectives

2.1 Research Questions

As part of this work, we address the research questions related to analysis of paraphrasing

in Hebrew:

2.1.1 Hebrew Specific properties

Are there specific properties of the Hebrew language that allow paraphrasing?

- Morphological derivation (e.g., using participle forms to operate as nouns, or
verbs). For example, the following pair of sentences is a case of a participle taking
form of a verb to create a paraphrase of a given sentence:

DA DT DN DINYNN DITIHYI
- When children get tired, they will fall asleep easily.
JN0PA DNTN DY DTN
- Tired children fall asleep easily.

- Syntactic variations exploiting free-word order in Hebrew. Sentences in He-
brew may be expressed in different word orderings, as a tool to emphasize different
notions within the same occurrence, which is a common target of paraphrasing:

YN NN ONION 2N
- I made the cake.
20N MYD TN
- The cake, I made.

- Lexical replacement. Replacing a Hebrew word with another derived from another

language with transliterations, with another part of speech.



NIRDA PLIZNZ NOIN TPIODN -
- The car was completely ruined during the accident.
NNNDN MIAPYA DIJ-ORVIV NIAY TPIINDN -

- Because of the accident, the car is a total loss.

2.1.2 Hebrew Datasets for Paraphrasing

Which datasets can be used to collect and identify a database of paraphrases in Hebrew?
The objective is to identify pairs of naturally occurring sentences which are paraphrases
with high likelihood. We still need to manually assess the level of paraphrasing, but we

would like to mine existing text repositories to extract likely candidates.

2.1.3 Method Adaptation for Hebrew

Could approaches taken on other languages (especially English) for paraphrasing identifica-
tion and generation be applied on Hebrew? What aspects of the methods must be adapted

to account for specific properties of Hebrew?
- Word agglutination
- High morphological ambiguity

- Free-word order syntax

2.1.4 Producing Hebrew Resources for Other NLP Uses

Can the process of learning paraphrases yield resources applicable for other NLP Hebrew
tasks? Recent research in the field of NLP tries to reuse training information and share it
across common NLP tasks (this is known as “Deep Learning”). Can such information be

obtained and encoded in such a way to aid other Hebrew NLP tasks?

2.2 Objectives

The overall objective of this work is to develop computational methods to identify para-
phrases in Hebrew text. As part of this objective, we construct a dataset of paraphrase
pairs in Hebrew, we build reusable resources for Hebrew processing (word embeddings) and

measure their impact on other NLP tasks: Parts of Speech (POS) Tagging and Parsing.



Chapter 3

Previous Work

Relatively recent research has explored the possibility to learn paraphrases ([6, 33, 32, 25,

21]). These could be divided into three main categories [25]:
- Identification of a paraphrase.
- Generation of paraphrases
- Extraction of paraphrases from large texts.

We review work done in each of these interconnected fields in the rest of this chapter,

given defintions formulated in previous chapters.

3.1 Paraphrase Identification

This task involves receiving a pair of text fragments and determining if the pair consti-
tutes a paraphrase. Barzilay and McKeown [6] have developed an unsupervised paraphrase
identification algorithm. Their dataset consists of multiple English translations of foreign
books (e.g., books that were translated into English more than once). Their assumption
was that different translators will introduce paraphrases when translating the same source
text. First they used the alignment method of [17] to align the corresponding translations.
They continued by applying an iterative model for extracting paraphrases features from the
aligned sentences. The iteration starts with a simple rule, which extracts the surroundings
of identical words (namely a number of tokens before and after an identical word) in both
sentences. From these surroundings they code a "contextual rule", by exploiting the sur-
rounding words parts of speech. They continue by reapplying the new rules learned in the
previous iteration upon their corpus once more, allowing for a predefined number of sepa-
rating tokens to appear, thus allowing new rules to arise. This process ends when no more
rules are discovered during a single iteration. During these iterations a classifier is trained

from the examples extracted from the text.



Socher et al [33] created a system for paraphrase identification composed of two parts:
the first is an autoencoder [31], trained to compress setences taken from the WSJ corpus
and which were syntactically parsed using an automatic parser (the Stanford parser). The
leaves (representing original words in the sentence, preserving the original word order) were
replaced by 100 dimensional number vector embeddings of the words (obtained by a sta-
tistical language model, [13, 38]). The autoencoder then traverses the tree in a bottom-up
manner, at each step saving the encoding of two already computed nodes at their parent
node. Thus, the system outputs a tree in which each node contains an encoding (a 100
dimensional vector) of the subtree which it spans.

The second part of their system (after the autoencoder has been trained), receives a
sentence pair and computes two parsed auto-encoded trees, as explained above. The eu-
clidean distance between each node i of the first sentence, and every node j in the second
is then computed to form a similarity matrix. Since this matrix is not of a fixed size (be-
cause sentence pairs are not of fixed size), this matrix is then sampled by running a sliding
window of fixed, predetermined size, over it and picking the minimum of every window into
a “dynamic-pooling” matrix. This matrix, now being of fixed size, can be fed to another
classifer trained to distinguish between paraphrases pair pooling matrix and non-paraphrase
pair pooling matrix.

This system provides state-of-the-art accuracy in paraphrase identification in English as

of 2012 and seems to be quite robust across domains.

3.2 Paraphrase Generation

Paraphrase Generation is the task of generating a paraphrase of a given text fragment. The
Microsoft NLP team [32] created a system to produce paraphrases of an input English sen-
tence. Their system gathered a large automated training set from news sites, upon which
they performed subsequently: sentence alignment, word alignment and phrasal replacement
identification. They eventually learned a "phrasal translation database" from this dataset.
To create this database they have used methods from the area of Statistical Machine Trans-
lation (SMT). Given an input sentence, they create a "generation lattice" which describes
all possible paraphrases for each possible phrasal alignment where each label is marked with
a probability assigned by the system. The lattice is then exploited to generate traversal

paths which can be ranked by probability.

3.3 Paraphrases Extraction

The task of extracting parphrases from a large given corpus. In the field of paraphrase
extraction, [20] is a typical example: they developed a system for extraction of Japanese

paraphrases from the web. They begin by scanning the web for what they call a "definition



sentence", a sentence which describes a term. This is done by searching for a certain sequence
of part of speech tags which according to their hypothesis definition sentence are likely to
adhere to. All the definitions of the same terms are considered candidate paraphrases. These
possible paraphrases are parsed for dependency structures using an automated parser and
classified by a Support Vector Machine (SVM) classifier to decide which candidate should
be declared as a paraphrase. Using this method they have achieved a large collection of

300K paraphrases with estimated precision of 94%.

3.4 Hebrew Paraphrasing

In comparison to the vast research efforts invested in English paraphrasing, very little work
has been done in the field of Hebrew paraphrase. [29] have developed a medium scale
Wordnet for Hebrew, consisting of 5300 groups of synonymous lexical items (synsets).
The approach they have taken was to form the Wordnet by aligning English and Hebrew
expressions, and infer relations from the English available Wordnet onto their created Hebrew
Wordnet. They state that this method (called MultiWordNet) is preferable over building
the Wordnet from scratch since the Hebrew language is poor on computational linguistic
resources. The lack of monolingual dictionaries in Hebrew is given as an example of such

resource.



Chapter 4
Linguistic Background

4.1 Is Paraphrasing Possible?

It is unclear whether two sentences can really be considered “equivalent”. This question is for-
mulated clearly in Clark’s Principle of Conventionality and Principle of Contrast ([12][11]):

Principle of Conventionality: In every language community, there are certain mean-
ings for which there exist conventional words used to express these meanings.

Principle of Contrast: “Every two forms contrast in meaning”. That is, when there is
a deviation from the conventional word used to express a meaning, a member of the language
community will assume the speaker is seeking to convey a (perhaps slightly) different notion
than that of the conventional meaning.

In other words, following the general approach of minimal distinctive pairs adopted
in structuralist linguistics, any paraphrase pair must be explained by a deviation in meaning.

Many experiments in the linguistic field were conducted to provide empirical evidence of
the validity of these two principles. Among these were studies of the way children acquire
language (and seemingly avoid attaching two different words to the same meaning), and
studies across different language communities speaking the same language (showing different
conventional names for the same meaning). Experiments supporting these principles were
also conducted among Hebrew native speakers [15].

If every two forms of words indeed differ in meaning as research suggests, one can induce
that two different phrases must also differ in meaning. Thus complete and true meaning
preserving paraphrase does not exist. Still, different linguistic theories attempt to define

“near equivalence” through different ways. We review two such attempts below.

4.2 Levels of Paraphrasing

Halliday in [19] has developed a version of functionalist linguistics which puts emphasis on

the notion of paraphrasing. This perspective sees language as a tool which provides its

10



speakers with a system of choices with which to transfer meaning between the partici-
pants of a conversation. The set of choices available to a speaker are often called linguistic
devices. The functionalist theory enumerates linguistic devices at different levels which,
together, contribute to the expression of meaning in context. For example, Halliday classifies

linguistic devices in terms on their relation to three main dimensions:
Field Who does what to whom?

Tenor What is the relationship between the speakers?

Mode What theme and register is taken by the speaker?

Meaning is thus transformed from the speaker intention into natural language by deciding
on a set of linguistic choices. Analyzing text, according to this school, is trying to recover
from a sentence the decisions which produced it.

In this perspective, paraphrases are two sentences which are produced by “almost the
same intentions” conveyed using different linguistic devices. Analyzing each of the sentences
in a functionalist point of view is discerning the “input” to the linguistic functions. Pick [30]

gives the following paraphrases as example:

e I “Julius Caesar was assassinated by Brutus”

IT “Julius Caesar lay dead at the hands of Brutus”

e I “John lent Mary the book”

IT “Mary had the book on loan from John”

According to Pick both sentences of each pair consist of the same functional elements.
But the linguistic devices used to convey this similar meaning are different: with different
syntactic structures and different lexical elements used in each sentence.

Interestingly, some of the decisions taken while producing an utterance are dictated
directly by the speaker intentions, while others are imposed as a consequence of earlier
decisions. For example, when a speaker decides to use a specific verb (like “assassinate”),
together with this decision comes the requirement to use a subject and an object. In contrast,
if the predicate “lay dead” is selected, the “agent” of the action does not need to be expressed.
One could just say: “Julius Ceasar lay dead.”

In addition, for some verbs, the speaker must further decide whether to use the verb in
the passive or active voice (“assassinate”) while this option does not exist for others (“lay
dead”).

Accordingly, when one analyzes the set of decisions taken in order to produce two closely
related sentences (a pair of sentences candidate as paraphrases), one must identify the base
decisions which explain the contrast between the two sentences. Those decisions which

derive from other decisions are not necessarily meaningful to the same level. Accordingly,

11



one may distinguish different levels of paraphrasing between pairs of sentences — in other
words, paraphrasing is not a binary relation, but is more a gradable relation between pairs

of sentences.

4.3 Explaining Paraphrases: What Motivates Deviation
from Convention

Based on the principle of conventionality, it is generally assumed that expressions of a given
meaning can be ranked in terms of their conventionality. More conventional expressions
bring less “surprise”. When a deviation from conventional expression is detected, linguists
are often interested in “explaining” the deviation (which is a source of meaning).

For example, Hirst [21] proposes a classification of paraphrases as small scale and large
scale paraphrasing. Small scale paraphrases are two phrases which are identical except for a
few words exchanged for near synonyms. Following the principle of contrast, this divergence
between otherwise identical phrases indicates the speaker intention to give the phrase a

different meaning. For example:
I Yosst bought a carpet at the market

P LY NP OPOY e
PV T2 NP 0P e

e The word “shatiach” in the first sentence is substituted with the word “marvad” in
the second. “Shatiah” is the Hebrew contemporary conventional word for carpet.
The deviation in the latter may suggest that Yossi bought a rather exclusive artifact

instead of a usual rug.
II The destruction of the building occurred last year

N72YY MWA NP P20 DN e
17AYY MIWA M PN 1N e

e The word “herez” in the first sentence is substituted with the word “hurban” in the
second. As before, The former being the Hebrew contemporary conventional word
for destruction. The deviation in the latter may suggest that the speaker would
like to convey a sense of grief related to the destruction, as opposed to the latter,

which may sound as a more objective description.
III The last few days indicate that the fighting is over

MAPN NO 2y DY DNINND O e

MNP DY DTYN DINRD DI e

12



e The word “sof” in the first sentence is substituted with the word “ketz” in the
second. Again, the former being the Hebrew contemporary conventional word for
ending. The deviation in the latter may suggest that the speaker believes that the
break in the fighting is a more constanst state, as oppose to the former, which may

be understood as a less definite state.

Large scale paraphrasing, according to Hirst’s division, is the act of different phrasing of
full sentences or paragraphs. This instance of paraphrasing can be found when an author,
either consciously or unconsciously, inserts his own ideology and perception into the details

of an occurrence. For example:
I Emphasis

YN NN ONION 2N
e I made the cake.
J10N YD TN
e The cake, I made.

The latter emphasizes the product of the baking (the cake), while the former emphasizes

the maker (I made the cake).
IT Ideology

(29.2.2012 ,NIND) JPIYN MINOVIN YN WIma
e Dorit Beinish retires from Supreme Court. (Haaret’z, 29.2.2012)
(28.2.2012 , VN 12°3) NIPAN NI LI IPINT
e Dorit Beinish goes home. (Kikar Hashabat, 28.2.2012)
Although the two news snippets above report the same occurrence - the retirement of

Dorit Beinish from the Supreme Court, it is safe to say that the latter phrase takes a

more supporting approach to her departure.

In general, one can explain the distinction between paraphrases in terms of (1) which level
of linguistic expression differs (a single word or the syntactic structure) and (2) what moti-
vates the deviation from one form to another (put emphasis, express additional connotation,

avoid expressing a part of the meaning, indicate different levels of social appreciation).

4.4 Syntax and Paraphrases

One of the main linguistic sources of paraphrasing consists of altering the syntactic structure

of a sentence. For example, one can change a sentence from active to passive voice:

1. The cat eats the mouse.

13



2. The mouse is eaten by the cat.

Many similar syntactic alternations have been identified which can be used as sources
of paraphrasing. When combined with other sources of paraphrasing (such as replacing a
word with a quasi-synonym or with a pronoun), one obtains a large range of variants from

a base sentence:

1. The cat eats the mouse.
2. The mouse is eaten by the cat.

3. It is devoured by the felin.

Parsing (also known as syntax analysis) is the process that maps an input sentence to
the syntactic tree representing the relation among words within the sentence. The syntactic
structure is usually not visible explicitly within the sentence — one must recover it using
the rules of grammar and knowledge of typical relations among specific words. Parsing is a
necessary step to assess whether two sentences are syntactic variants, or to align paraphrase
candidates so that each part of the sentence can be further analyzed in terms of lexical
similarity. In the example above, parsing is necessary to discover that “the felin” must be
compared with “the cat” and “devour” with “eat”.

Computational techniques for automatic parsing have seen tremendous progress in the
past decade. We survey two common approaches, phrase structure grammar (constituent
grammar), and dependency grammar. We focus mainly on instances of paraphrases pairs,
and review the resulting parse trees in each of the approaches. From here on, when speaking
of constituents of parse trees we will refer to a part of sentence which can be seen as single

unit in parse tree, i.e., a subtree of a parse tree.

4.4.1 Phrase Structure Grammar

Phrase structure grammar, also known as constituent grammar, is the grammar originally
defined by Chomsky[10] as part of the generative school. A Phrase structure grammar is
formally defined as a 4-tuple G = (N, T, S, P) where

I NNT =0, N - The non-terminal set, T - the terminal set
IT S € N, S being the start symbol
IIT P = {(u,v) : u,v € (N|JT)*}, P is finite and called the production rules

According to these grammars, the leaves (terminals) of the parse tree are the words of the
original sentence, appearing in the original sentence order. Accordingly, the leftmost word
will be represented by the leftmost leaf, and so forth. The rules by which an input sentence

is parsed onto a parse tree are defined via a transformational grammar. Computational
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Figure 4.1: Constituent Parse Tree for the Hebrew Sentence “no bears and no forest”

tools which parse input sentences onto a possible constituent parse tree were devised with
good results for Hebrew and English languages ([9],[18], respectively). Figure 4.1 shows a

constituent parse tree of the Hebrew sentence “No bears and no forest”.

4.4.2 Dependency Grammar

Dependency grammars in modern linguistics date to the work of Tesni‘re (1959) [27]. This
approach towards parsing views the syntax analysis of a sentence as consisting of binary
asymmetrical relations between words. In each of these relations there is a word which
functions as a head (also known as governor, regent) and a second word which functions
as a dependent. The relation between the two words is called a dependency. According to
this linguistic theory, the speaker of a language analyzes syntax by perceiving connections
between words, the dependency relation aims at modeling this connection. This binary re-
lation of head - dependent will appear in the parse tree as father - son relation.

This definition suggests that dependency parse trees will be formed of words in the sentence.
As opposed to the constituency grammar trees, words in the dependency tree will appear
also as the inner nodes, and not only as terminals. Because of this property, dependency
trees will be of smaller size as that of the matching constituency tree, in which syntactic
nodes are present in addition to the original words of the sentence. As an example of this,
the dependency parse tree for the sentence “no bears and no forest”, which was shown pre-
viously for constituency tree, is shown in figure 4.2 (18 nodes in constituency tree versus 5
nodes in the dependency tree) .

The root of every subtree will represent the head (and will normally be a verb) of that

subtree (by transitivity), where his direct dependents will be his sons.
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Figure 4.2: Dependency Parse Tree for the Hebrew Sentence “no bears and no forest”

Various definitions exist for determining when two words will appear in a dependency

relation, yet, as is often the case with NLP, none of the rules cover all cases. Following are

a few of these definitions [27] (where: H marks the head, D marks the dependent, and C

marks their relation) :

e H determines the syntactic category of C and can often replace C.

The form of D depends on H.

H is obligatory, D may be optional.

The linear position of D is specified with reference to H.

H determines the semantic category of C, D gives semantic specification.

These should be seen as guidelines for identifying words in dependency relation: failure to

satisfy one of these rules does not necessarily indicate the pair of words is not in a depen-

dency relation. Accordingly, success to satisfy a rule does not necessarily deem the pair as

being in a dependency relation.

As for Constituency parsing, tools to automatically parse a dependency structure of a sen-

tence were devised ([23],[18]).

4.4.3 Examples of Paraphrases Pair in Phrase Structure Grammar

vs Dependency Grammar

In the following section we review paraphrase pairs’ parse trees in both formats defined

above (i.e, constituency and dependency)

1. A simple example of paraphrase pair was described before, as a pair which demonstrate

the change of emphasis:

e I made the cake.
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ANON MWD NN e

e The cake, I made.

Figure 4.3 and 4.4 show the corresponding constituent and dependency parse trees of
both sentences. In fig. 4.3 we can see the same constituents appearing as subtrees
of both sentences, while in fig. 4.4 we can see that “the cake” in the latter sentence
receives a higher node in the parse tree, when comparing to the former sentence. This

may correspond to its increased emphasis in the second sentence.

. Recall the example of Hebrew paraphrasing arising from replacing a term with its

transliterated equivalent:

NNRNA PLIZND NOINI TPNINDN @
e The car was completely ruined during the accident.
NNNDN MIAPYA DI-5RVIV NIAY TPIONN e

e Because of the accident, the car is a total loss.

Figure 4.5 and 4.6 show the corresponding constituent and dependency parse trees of
both sentences.

In fig. 4.5 we can see that the general structure is similar within the trees (with
respect to the inner nodes structure and type). There is a change in one constituent
S = PP = PP on the right is substituted with S = ADV P = RB on the left.
This can be seen as a substitution of the Hebrew “lahalutin” (completely) with the
transliterated term “total loss”.

In fig. 4.6 The governor of the sentence is changed from “neherza” (wrecked), on the
left, to “avra” (suffered, in this context) on the right. Apart from that we see, again,
the subtree of “lahalutin” (completely) on the left, changed with “total loss” on the

right.

. In this example we examine a relatively complicated example of paraphrasing, which
includes participles changing part of speech between the two sentences and reported

speech.

INDT NIN 2D PIMYL MINIT ,OUN TIWNN 7D DN WIAP DLW e

e Judges have decided today that the defendant is guilty, although he claimed being

not guilty.
NI NINY TIN2 MK DOVAW 2D N OV DYRINIY TN e

e The defendant that was accused today said that he was not guilty.

Figure 4.7 and 4.8 show the corresponding constituent and dependency parse trees of

both sentences.
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In fig. 4.7 a few similarities can be found, although not as easily as in previous
examples. The first level below the root is almost identical, and the prepositional
phrase is also similar.

In fig. 4.8 it is hard to find any similarities between the parse trees, nor to map
between matching constituents.

In both figures it can be seen that the participle “shoftim” (judge) indeed appear in

different nodes in the parse tree.

4.4.4 Discussion

As a conclusion of this section, we notice a few relevant observations with regards to both
formats of parse tree which were shown, within the scope of the task of paraphrase identifi-

cation:

e Dependency parsing yields a tree with significantly less nodes when comparing to

constituency parsing.

e A change in a dependency parse tree due to paraphrasing can inflict a change in higher

nodes than that of a constituency parse tree.
e Dependency parse trees seem more sensitive to changes in the sentence structure.

e A note on binarization of parse trees: While the binarization of a constituency parse
tree is rather straightforward, this is not the case when binarizing dependency parse

trees. This topic is elaborated in 5.3.2.
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Figure 4.4: Dependency Emphasis Paraphrasing Example
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Figure 4.5: Constituent Transliteration Paraphrasing Example
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Figure 4.6: Dependency Transliteration Paraphrasing Example
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Figure 4.7: Constituent Participle and Reported Speech Paraphrasing Example
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Figure 4.8: Dependency Participle and Reported Speech Paraphrasing Example
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Chapter 5

Methodology

This chapter covers the main methods of learning which are applied in this work, description
of the adaption technique and proposed hypotheses, and finally the experiments taken to
prove those hypotheses.

The structure of this chapter is as follows: In Section 5.1, we describe the method and
outline of the work in general lines. Section 5.2 reviews the methods of learning applied in
NLP which are relevant to the task of paraphrasing. Section 5.3 contains an in depth plan
for adapting the algorithms discussed to answer the research questions posed in previous
chapter. Section 5.4 concludes this chapter by depicting the experiments by which we test

correctness of the methods proposed.

5.1 Plan of Work

The target of this work is to face the task of paraphrase recognition in Hebrew. To attack
this problem, we apply, adapt, and devise methods of machine learning (neural networks,
autoencoders), and computational linguistics (language models, automatic parsing). Since
this task has not yet been addressed in Hebrew, it is missing comparative benchmark results
and adequate corpora. Thus, we must collect and publish such a corpus. Datasets consist
of a monolingual Hebrew parallel corpus of paraphrases. These are acquired in an unsuper-
vised manner by obtaining hourly news flashes and corresponding news stories from leading
Israeli News sites. Each news flash in the dataset is aligned against an assumed matching
news flash from the other websites. This yields a method for obtaining an automatically
growing dataset. These datasets will be hand tagged by human judges in order to obtain a
baseline comparable corpus, guidelines for formally defining what is considered as an Hebrew
paraphrase will also be published as part of this work (see Appendix B). The methods and
hypotheses raised in this work are trained and tested against this corpus. The desired size of
the corpus is 6000 sentences, with 67% of the pairs being in a paraphrase relationship. These

numbers are an Hebrew equivalent of the Microsoft Research Paraphrase Corpus (MSRP
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Model ACC | F1

Wan et al. (2006) 75.6 | 83.0

Das and Smith (2009) | 76.1 | 82.7

Socher et al. (2011) | 76.8 | 83.6

Table 5.1: Baseline results for English paraphrase recognition on the MSRP corpus

corpus [1]). Recent research in the field of English paraphrase uses this corpus as baseline
comparative parallel corpus.

In order to recognize Hebrew paraphrases, we go along the lines of [33] that used auto
encoders on embedded parse trees of the input sentences. They have used word feature vector
representation of the words, as obtained from a deep learning approach. In the course of
this work we reproduce the settings described in that paper for the English language. We
offer some deviation and improvement of the algorithms they have used, introducing a new
search problem on the pair of trees. Following the reproduction of that experiment we
implement it for the Hebrew language. This implementation requires generating resources
not yet available for the Hebrew language, such as Hebrew word embeddings, binarization
of dependency parse trees, and the parallel paraphrase corpus already mentioned above.

We test both Socher’s implementation’s equivalent , as well as the proposed improvement
of it, on the Hebrew corpus. The main experiment is the task of identifying paraphrase
identification as described in the previous section. The baseline results of several English

applications on the MSRP corpus appear in Table 5.1.
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5.2 Learning Methods

Learning methods applied in Artificial Intelligence (AI) in general are used to detect some
recurring pattern in input data. If the process of learning is supervised then the pattern is
first learned from labeled training data (by adjusting the specific parameters of the learning
model). Then the model is tested on an unlabeled, and previously unseen test data, to
measure its ability to infer and deduce from the training phase. We hope that by properly
modeling the input data and correctly adjusting the model parameters during training we
will learn the real underlying pattern embedded in the data.

In Natural Language Processing (NLP) in particular, these methods are employed over
natural language corpora. Training data may be labeled for the specific tasks - i.e., pairs of
sentences are marked manually as being paraphrase or not. Additional labels on input data
may include semantic information, which is naturally not present in raw natural language.
These may include Part of Speech (POS) tags, parsing of the sentences, anaphora resolution,
to name a few. Over this data and possibly additional labels, learning methods are used to
explore recurring patterns in the input text. We review below the main learning methods

applied in this work to identify recurring patterns in Hebrew paraphrases.

5.2.1 Neural Networks
5.2.1.1 Outline

The concept of neural networks is to try and imitate the function of neurons in an intelligent
being’s brain. Each neuron is modeled as a predetermined differentiable function which
receives a predetermined number of inputs. Neurons are connected to other neurons, forming
what can be seen as a graph whose vertices are the neurons, and whose edges are the
connections among those neurons. The topology of this graph is determined a priori. A
neuron network is the set of neurons and their connections. A special case of neurons are
the input neurons - which receive their input from an input instance of predetermined format,
and output neurons which output the result of the total network. Most of the information

in this section is based on the book [34].

5.2.1.2 Neuron

The function of a specific neuron can be seen as composition of two functions:

e Integration function: I : R™ — R - receives as input the incoming edges of this neuron

and outputs a single output.

e Activation function: A : R — R - receives the output of the integration function and

returns the final output of this neuron.
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Thus, the function of this neuron can be seen as A o I . The activation function can make

the behavior of the neuron non-linear.

5.2.1.3 Weights

As we’ve seen, the output of a neuron is in turn part of the input of another neuron. Two
neurons are connected by an edge in the network graph on which the information “travels”.
As part of this model, the graph is seen as a weighted graph. Each of the edges e has
a weight w. € R, the information z traveling an edge e is multiplied by w, to reach the

integration function as the input z - w,.

5.2.1.4 Network Computation

Neural network computation is the process of giving an input instance to the input neurons,
continuing by computing at each step the neuron function, and transferring their output to
their connected neighbors. The process is terminated when the output neurons output a
value. This vector of values is the output of the network and the result of its computation

on the input.

5.2.1.5 Learning

Most of the parameters of the network are predetermined, decided upon during design time,
and remain constant throughout all iterations of network computations. These parameters
are the neural network graph, including the number of neurons and their connections, and the
neuron functions (both integration and activation). The learning is achieved by modifying
the previously mentioned weights of the edges, these change during a number of iterations
which is called “training” in which tagged input (i.e., that the desired output for this input
is known), is fed into the system. Knowing the desired outcome can yield an error value
for this specific computation, by means of a distance metric. Thus, after a number of these
iterations, the value of an error function is known at specific points of input space. This
error function can be seen as a function of the weighted edges existing in the system, as
these are the only values which can be modified according to the neural network model.
Thus by summing the received errors of all inputs we can arrive at an error value for these
weights. Changing the network weights and recalculating the error yields an error function
in weight space whose values are known at specific points. We can search for the minimum
of this error function using numerical methods such as the discrete gradient of the network

function.

5.2.1.6 Backpropogation

Learning in a neural network can thus be reduced to calculating partial derivatives of the

error function over weight space, in order to perform gradient descent on it, and minimizing
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the error on the training dataset. A common way to calculate these partial derivatives is
Backpropogation. This method exploits the chain rule that applies in calculating derivatives,
and stores the derivative of its input during network computation. After the computation
step begins a backpropogation step which starts from the output nodes, traveling the network
backward, multiplying at each neuron the saved value of the derivative. Thus, the derivative

of the network is obtained at the input neurons.

5.2.1.7 Layered Networks

A special case of neural networks, and one of common use in machine learning is the case

of n layered networks. Several extra restrictions are applied on these networks:

e The Neuron vertices V' of the graph can be seen as a union of disjoint sets: V =
Vild..UVa , ViNV; = 0. In layered networks the inner layers: V5,...,V,_; are
referred to as “hidden layers”, and their respective neurons are referred to as “hidden

units”.

e Edges between neurons can be set only between nodes of adjacent groups, i.e, the
edge set E of the graph can be seen as E = E1J...\UEn—1 , E;(E; = 0, such that

Ei = {(vi,vit1)|vi € Vi, vig1 € Viga}
e Normally all neurons in a layer are connected to all neurons of adjacent layers.

Special optimizations for calculating the backpropogation step on layered networks exist,

and we use this type of networks throughout this work.

5.2.2 Deep Learning

Recent research in AT has yielded the approach of deep learning [7]. This approach aims at
modeling the human perception of complicated notions in several levels of representation.
This approach is implemented using several neural networks connected in such a way that
one network output is transferred to another network input. Backpropogation is carried
across networks, starting from the topmost network to the bottom. This process can give
flexibility in determining the networks parameters according to their location and dedicated

task.

5.2.2.1 Curriculum Learning

As part of the model of deep learning, the concept of curriculum learning [8] was established.
This approach claims that by giving the deep learning networks inputs in an increasing order
of complexity (as one teaches a child), the model will be able to obtain better results. This
is due to establishing firmer representations on the “simple” samples, and improving that

solid ground when facing higher degrees of complexity in the input.
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5.2.2.2 Multi Task Learning

It is common in recent research to attack several tasks at once, when using deep learning.
[13, 14] created an architecture where the lower levels of the deep learning extract features
of the input text, and embed these features in multidimensional vectors - these vectors are
the output of the bottom networks. These bottom networks are shared across higher-level
tasks (POS tagging, Semantic Role Labeling, Chunking, Name Entity Recognition, and
Language Model calculation). The upper levels, which are task specific classifiers take as
input these embeddings instead of the original text. Thus the lower levels change during
training (which is done in an interleaved manner) of all these tasks. The rationale is that
information learned for one task for representing feature embedding, may be useful for a
second task which classifies according to the same feature - thus the tasks classifiers “profit”
from the multi training.

This work is impressive in that it achieves state of the art results on a wide range of
natural language tasks using a single uniform feature representation and learning method

for all tasks.

5.2.2.3 Word Embeddings

As a by-product of this process - The embeddings [13] of words were published for English
dictionaries [38] to use as a plug-in enhancer for use in many NLP tasks which treated words
simply as index to a finite dictionary.

As part of this work, we use a deep learning architecture to learn a Hebrew language
model from a large corpora of unlabeled text. This yields a dictionary of Hebrew word
embeddings which aids the process of paraphrase identification. This dictionary can also
be published to aid other research in the field of Hebrew NLP. The language model and
embedding networks are presented with dictionaries of growing size (words are ordered from

the common to the less common), according to the curriculum learning concept.

5.2.3 Auto Encoders

A major drawback on the model of neural networks as presented above is the constant size
of the network, on all its parts. These must be defined during the design of the system, and
determine the topology of the network. This constant size of input and inner representations
(known as the connectionist approach) does not the fit the nature of most Al tasks, for which
the instances of a task are not of constant bounded size. NLP tasks possess this property as
well. The instances of natural texts are of variable size and unbounded length — no known
bounds exist for word length, nor for sentence length, nor paragraph length. Specifically in
this work, it is easy to observe from the examples given in previous chapters that paraphrases

must not be of identical length, although by definition they convey the same amount of
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information. This property seems to limit, or cancel the use of neural networks in the field
of variable length instances, such as NLP.

To attack this problem, several connectionist systems were devised to cope with the
unbounded input size. We review here the approach of Recursive Auto-Associative Memory

(RAAM [31]), also known and extended in later papers as Auto Encoders.

5.2.3.1 Outline

Auto Encoders aim at creating recursive fixed size representations of variable size input.
The input is assumed to be a variable length list of fixed size elements (a character string
for example), mark each element representation size as K. They do so by going over the
input instance of size K -n and “encoding” every pair of consecutive input elements onto one
compressed representation. Thus obtaining a second level of representation of size K - 3,
this process is repeated until the last level contains one element of fixed size which represent

the entire variable size input, in a fixed size representation.

5.2.3.2 Neural Network

The system Pollack [31] devised was composed of two concatenated neural networks:

e Encoder - a neural network composed of an input layer of 2K elements fully connected

to an output layer of K elements.

e Decoder - a neural network composed of an input layer of K elements fully connected

to an output layer of 2K elements.

These two networks are trained concurrently as a single network: a network of 2K input
elements, K hidden units in one hidden layer, and 2K elements in the output layer. During
training on an input element, the element itself is presented as the network desired outcome
- thus training the network to output the input it received, after going through the hidden
layer. The hidden layer (recall that this is actually the output layer of the encoder), now
holds a compact representation of the input. In other words, the auto-encoders “learns” the

identity function while going through a compressed representation of the input space.

5.2.3.3 Encoding

Encoding of a variable size length input is giving to every two consecutive elements (con-
catenated to get 2K elements) to the encoder network, thus producing an element of size K,
this is marked as the father of the two nodes which it encodes. This process repeats until
we are left with one element of size K. This process yields a binary tree of the elements,
in which the leaves are the original input and the inner nodes are representing some subtree
they encode. If the encoding phase is flawless one can reconstruct the entire input sentence

given only the root of this binary tree.
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5.2.3.4 Decoding

The process of decoding consists of taking the root of the previously mentioned binary tree,
and passing its K elements to the decoder network to receive 2K elements (the decoded
representations of its sons). This process is repeated on the sons until the full tree is

obtained again, and the input sentence is reconstructed.

5.2.3.5 Uses in NLP

Applications for such a system in the NLP field consist of taking a natural text structure,
such as a parse tree, and encoding it. Later stages of the algorithms can refer to the entire
structure, or parts of it, as a fixed size input.

[33, 36] have used autoencoders in two NLP applications:

e Predicting sentiment distributions ([36]) : Input sentences were encoded, and during
training the inner representations of the tree were learned, as indicators for sentiment

classification of the sentences.

o Identifying paraphrases ([33]) : Each sentence of the given input sentence were en-
coded. Afterwords, the inner representations were compared and an euclidean distance
was computed across the encoded representations, to train as indicators of paraphras-

ing.

In this work we train an Auto Encoder for Hebrew parsed sentences, and try to compare
inner representations as indicators for paraphrasing. The words in the leaves are replaced

by their multi-dimensional vector embeddings.

5.2.4 Tree Matching

Tree matching is a new concept which we introduce to better exploit the usage of autoen-

coders, compared with the approach taken in [33].

5.2.4.1 Definition

Consider two binary trees - ¢1,to (corresponding to sentences s1, $2, and obtained from them
by auto encoding) in which the leaves contain word embeddings and the inner nodes contain
encoding of the subtree they span. Define a “Tree Match” M, to be a set of tuples (n1,ns),
where ni,ny are nodes of ¢1,ty accordingly, s.t. for every word w in sq(s2), M contains
exactly one tuple which contains a node in the path from w to the root of ¢; (¢2). For
instance the tuple which contains the root of both sentences is always a match.

This definition captures the idea that a paraphrase pair consists of sentences whose
parts are interchangeable, from the sentence level down to the word level (including word-

reordering).
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5.2.4.2 Tree Match Score

Following this definition, a score of a match can be defined:
S(M) = Z (|In1,n2|| - (number of spanned leaves by n; and ns))
(n1,m2)eM
During training, a simple classifier can learn the threshold below which minimal matches
represents pairs which are paraphrases. After training, the classifier would hopefully yield
not only a binary value, but also significant matching between the pair, "explaining" why

they are a paraphrase.

5.2.4.3 Tree Matching is NP-Complete

It can be shown that Tree Matching, as defined above, is an NP-Complete problem by
showing:

Positive SubsetSum <, Tree Matching

For proof, see Appendix A.
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5.3 Hebrew Paraphrasing

This section describes the specific algorithms, modifications and adaptations, taken in the
course of this work to answer the research questions. The general approach for paraphrase

identification is as follows:

e Given an input pair (s1,sz2) of sentences in He-

brew.

e Parse them for dependency / constituency to re-

ceive two trees (t],t5).

e Binarize these trees to obtain two binary parse

trees (t1,t2). (explained in section 5.3.2). Bi-

narization is important to allow us to use auto-
encoders over the binary trees.

embed the leaves ’
e Change the leaves of the trees to contain Col-
lobert & Weston language model embeddings.

(explained in section 5.3.1)

[extract minimal match]

e Use an auto encoder to receive compact represen-

[pass through c13551ﬁer

tations at each of the inner nodes. (explained
in section 5.3.3)

e Search for a minimal Tree Matching on those two

trees, and use its value to decide if the pair is a

paraphrase. (explained in section 5.3.4)

The rest of this section explains each of these in detail. The chapter follows a pipeline
architecture — every section’s output is the next section’s input. Every section start with a

“black box” examination of the currently described logic, and its part in the overall process.

5.3.1 Producing Deep Learning Embedding for Hebrew
5.3.1.1 Overview

As described above, word embeddings are mapping from a finite word dictionary D onto
a d - dimensional feature numerical vector space. Each word w € D is mapped onto a
vector r,, € R, It is hoped that the structure of this vector space reflects word similarity,
so that if two words are “similar” (along multiple linguistic dimensions, meaning, spelling,

morphology, parts of speech etc), their vector encoding will be “close” in R<.
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This mapping is produced as a by product of deep learning architecture, and can be seen
as a goal on its own in order to provide a plug-in enhancer for common NLP tasks. As part
of this work, we provide such a resource for Hebrew by learning a language model over a
large Hebrew corpus. The language model on its own won’t be used for further tasks, but
the embeddings extracted from the architecture are published, and their ability to enhance

NLP tasks is tested on a common NLP task (POS tagging) in the course of this work.

5.3.1.1.1 Input Dictionaries are pre-constructed in a curriculum learning approach.
These are used to filter an n-gram corpus, by selecting from the corpus only n-grams which

consist of words from the dictionary. These filtered n - grams are the input for this stage.

5.3.1.1.2 OQutput For each word in the dictionary an embedding is produced onto a
100-dimensional hyperplane. This embedding encompasses an encoding of richer features
other than just index into a dictionary, as is usually the case in NLP applications. These
embeddings will serve the next stages by replacing each word by its embedding representa-

tion.

5.3.1.2 Preprocessing and Hebrew Adaptation

The corpus is pretagged with Adler’s analyzer [5] for POS, and tokenization. The prepro-

cessing steps taken on this corpus are:

e We take into account only the segmentation of the words — the following Hebrew pre-
fixes appear on their own as a different word:
v ,NN,2592
In, As, To, From, The, And, That

e Number tokens appear as NUMBER

After applying this segmentation on the corpus, we obtain a corpus with 131M tokens.

5.3.1.3 Language Model

Language models try to give a score to a phrase in a specific language. This score represent
the model’s estimation of the phrase being a valid phrase in this language. We build a
probabilistic language model based on a large corpus of 131 million tokens obtained from
news wire information. The language model is built using a neural network, which is trained
to separate between positive and negative examples of n-grams. The correct n - grams
are taken directly from the corpus. The negative examples (termed “corrupt” n - grams)
are created artificially, by introducing noise into positive examples. The requirement of

the language model is that it can separate between positive and negative examples by a
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difference score of at least 1.
Therefore, we would like to minimize the following expression:

D> max(0,1 - f(s) + f(s"))

z€S weD
S being the pool of all available overlapping n - grams which are composed only of words
in the current dictionary D. f is a network computation function, and s is the correct
n - gram, where we corrupt the last word of it with the word w. Minimizing this aims at
ensuring a difference of 1 between the score of a valid n - gram, and that of all “corrupt”

ones.

5.3.1.4 Curriculum Learning

Following the curriculum learning doctrine [8], we want to present the language model
learning environment with samples in an increasing order of complexity. The complexity of
the samples in the language model learning context, is in terms of the probability of the
appearance of a word in the corpus. E.g., a more common word is considered as a “simple”
example, whereas a less common word is considered a “complicated “ example.

Thus the learning is carried out in iterations:

e In the first iteration, start from random word embeddings in the range of [—0.01,0.01]
and train only on n - grams which contain words from a dictionary of the 5000 most

common words.

e In the next iterations, initialize the embeddings as those achieved in the previous step,

and increase the dictionary size to 10K, 30K,50K and finally 100K

5.3.1.5 Stochastic Sampling of the Error Function

The calculation of an error function of the model, as described above, is a computationally
heavy task, as it involves iterating over all the dictionary on every n - gram update. This
fact will make training an unfeasible task when reaching large dictionary sizes. In order to
make the task possible, even on large sizes of the dictionary, we instead sample the error
function using only one corrupt n - gram at each update. Thus stochastically “peeking” into
the model’s behavior instead of directly calculating it (this approach is taken by [13]). The

error function for a single iteration on the n - gram s is:
max (0,1 — f(s) + f(s*)) (5.1)

Where w is a word chosen uniformly at random from the dictionary.

This term is then backpropogated through the network to alter its parameters accordingly.
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Figure 5.1: Deep Network Structure

5.3.1.6 Deep Learning Structure

This section describes in greater detail the neural network structure devised in order to
achieve a model which is capable of computing the language model score according to the
requirements described above. As a by product of the language model training, d - dimen-
sional Hebrew word embeddings will be created in the deep structure hidden layers. Figure

4.1 graphically shows the structure described below.

¢ Embedding networks - These are | D| distinct neural networks with input and output
layers of size d, and no hidden layers. Each of which can be seen as a matrix M € R4

of the network’s weight.

¢ Embedding Dictionary - This will be the output of the embedding network com-

putation - the mapping between words onto the feature vectors:

— Its keys are the words w of the current dictionary D

— Its values are (v, € R%, M, € R%*%). These represent an initial word embedding
vy and a matrix of weights — this is adjusted during the embedding networks

training phase.

To obtain the embedding of w, one can perform v,, - M,,. We will mark the embedding
of a word w as emb(w) and the embedding of an n gram G = (wy, ..., w,) as emb(G) =

(emb(wy), ..., emb(wy,))
e Language model network - A neural network with:

— d - n input neurons (recall that we are looking at n-grams from the corpus, and
would like to obtain an embedding of d features for each word in the dictionary).

This will be used to input the network the current n-gram representation.
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— An hidden sigmoid layer of 100 hidden units.

— An output layer of 1 neuron - this will be used to calculate the score for this

n-gram.

e Complete deep network The complete deep learning network computation is as

follows:

— Input: G = (wy,...,w,) - a valid n - gram from the corpus.
— Algorithm:

* Obtain a random word @ from the dictionary to create the corrupt n-gram
G= (w1, .y W1, W)

* Pass G through the embedding dictionary to receive emb(G), concatenate
the vectors to receive a d - n length vector - pass this vector through the

Language model network to obtain a score Sg.

% Perform the same operations on G to obtain Sa

x Backpropogate the error in formula (4.1) through through the Language
model network to obtain an error e;,, € R?" at its input nodes.

% split ej,, to n vectors: (eym,, .-, €im, ), Where e, € RY

* backpropogate e, through the appropriate embedding dictionary item (e.g,

w;) and update w;’s embedding.

This algorithm is run for every n-gram in the corpus.

5.3.2 Binarizing Parse Trees
5.3.2.1 Overview

Neither constituency parse trees nor dependency parse trees are necessarily binary, as seen
in the examples shown in Chapter 4. This presents a problem if one wishes to perform
autoencoding of those parse trees. This is due to the fact that the autoencoding of a tree
structure representation of data requires a fixed size number of sons for each node. This
limitation is a derivation of the fixed size limitation of neural networks, as stated in section
5.2.1.

Therefore, in order to be able to autoencode parse tree of both formats, some sort of “bina-

rization” process of each format needs to be formulated.

5.3.2.1.1 Input The filtered n-grams mentioned in section 5.3.1 are pre parsed (using
Goldberg’s parser [18]), which yields a parse tree. This parse tree is further processed to
replace the leaves (the original words) with their corresponding embedding. That is, each
leaf w; € (w1, ...,wy,) is preprocessed to obtain emb(w;). Thus the input of this stage is a

parse tree T' whose leaves were changed to the corresponding embedding.
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5.3.2.1.2 Owutput A binary tree representing the same information as T is output.

5.3.2.2 Binarization of Constituency Parse Trees

The binarization of constituency parse trees is done in a rather simple approach, when
compared with binarization of dependency parse trees. This is due to the fact that the
words of the original sentence are already present in the tree leaves. Intuitively, binarization
of such tree T" over n nodes, is generating for each node which has m > 2 sons — a hierarchy
of sons which introduces O(log m) new synthetic nodes, each of which having only two sons.
The obvious setback with this approach is the increase in the size of the parse tree by a
factor of log(n). Figure 5.2 revisits Figure 4.5, this time the trees are binarized. Notice the
number of synthetic nodes inserted into the trees — these are marked to indicate the pair of

sons which were originally at that level of the tree.
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5.3.2.3 Binarization of Dependency Parse Trees

The binarization of dependency parse trees is not an intuitive task, in contrast to binarization
of constituency parse trees. No known method was found to propose an algorithm for such
binarization. There are several special features that would be desired from the parse tree,

output by a binarization algorithm for this task:

e The words of the sentence must appear only at the nodes of the tree, as opposed to
the general definition of dependency parse trees (which was given at chapter 4). This

is due to the fact that we employ autoencoding on this tree.
e Keep the head-dependency relation embedded in the format of the tree.
e Linear ordering of the leaves.

e Keep high nodes in the original dependency tree also high on the binary tree. This
requirement is due to the fact that higher nodes in the parse tree are more likely to
be encoded better. Since they are involved in less encodings, less noise is added along
their way to the final encoding of the root of the tree. Naturally, it is desired that

primary notions in the sentence (such as the head of relations), be encoded better.

Examples of the binary trees output by this process appear in 5.3 (again, a revision of Figure
4.6). Notice the added syntactic leaves, marked with a running index (the index only for
convenience of reference, and does not mark any other information encoded in that node).
It can be seen that in this binary example of a paraphrase pair, transformed from dependency
relation, we can still see the matching subtrees across the pair, as was discussed in section

4.4.2.

5.3.3 Learning to Parse on Embeddings Using Autoencoders
5.3.3.1 Overview

This section explains the process of training autoencoders on binary parse trees. The leaves
of the trees are replaced with the embedding of an input sentence, as was described in the
previous section. The target of this is to generate fixed size encodings of constituents of the
parse trees. Later stages can use this encoding of a subtree as a way to reference a subtree

of variable size using a fixed size vector encoding.

5.3.3.1.1 Input The binary parse trees which were the output of section 5.3.2 serve as

input for this stage.

5.3.3.1.2 Owutput An autoencoder encoding from 200 to 100 features is trained on the

set of all input binary n-grams parse trees. This autoencoder is later used to obtain fixed size
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representations of higher nodes in the parse tree, these serve in giving a metric to compare

inner nodes between a given test pair.

5.3.3.2 Training Process
For an input binary tree T', the process of training is as follows:

e Initialize an autoencoder network which encodes from 2d to d (and naturally decodes

back from 2d to d), as was described in 5.2.3

e Encode each pair of sibling leaves of the parse tree, and put the result encoding in the

father.
e Continue by encoding inner nodes of which both sons were encoded.

e At the end of this process, all nodes of the parse tree contain an encoding of its spanned

subtree.

Along this process many encodings are performed, use these encodings to train the autoen-
coder, again as described in 5.2.3. Thus at the end of this process we obtain an autoencoder
which is trained in efficiently encoding a parse tree in such a form to best reconstruct it
during decoding. Since we parsed along a parse tree of linguistic meaning, the root of sub-
tree contain encoding of the constituent they represent, hopefully encompassing interesting
features of the constituent, in a fixed size notation.

Figure 5.4 shows an example of such an encoding. Dotted edges (u1,v), (ug,v) mark that

the encoding of ujuy will appear at the data of v.
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5.3.4 Tree Matching
5.3.4.1 Overview

As described in section 5.2.4, tree matching is a new concept described in this work. It aims
at formulating a paraphrase pair in terms of a matching function between subtrees of the
parse trees, in which the words were changed for their embedding, binarized, and autencoded.
Upon this matching a score is defined. This score tries to predict the probability of the given
pair being in paraphrase relation, based on the given matching. The hypothesis claims that
the problem of paraphrase identification reduces to finding a best match between two given
texts’ parse trees, and deciding on a score threshold below which the texts are considered

to be paraphrases.

5.3.4.1.1 Imput A parsed, binarized, and autoencoded pair of texts is the input of this

section.

5.3.4.1.2 Output The score of the minimal match is output. On a given training set, a
classifier can then be trained to find a threshold in the data below which pairs are considered

to be paraphrases. Thus yielding paraphrase identification.

5.3.4.2 Finding Tree Matching

Since tree matching is an NP-Complete problem, we use a very simple heuristic. Exhaus-
tively searching the possible matches and recording the best one found. In order to reduce
this exponential run time, we stop the search after a predefined number of iterations, and
output the minimal match found thus far. Figure 5.5 depicts a possible (and probably de-
sired) match - nodes framed in box of the same color are matched against each other. It
can be seen that this matching in accordance with the definition given for tree matching at

section 5.2.4.

5.4 Experiments

This section describes the experiments which were conducted in order to assess the validity
of the hypotheses that were introduced in the course of this work. These are targeted to

test the separate contribution of each of the sections of the work.

5.4.1 Testing Embeddings

Collobert & Weston embeddings were shown to enhance the performance of many NLP tasks
in English [13, 8, 38]. Although in the original design [13] the embeddings were designed to
change during the simultaneous supervised training process of the NLP tasks (thus exploiting

the training process of one task to serve another’s), it has been shown that these embeddings
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may as well serve as an off-the-shelf “plug-in” enhancer for many distinct NLP tasks [38].
This approach takes an already proven system for a common NLP task which treats words
simply as index to a lexicon (thus using a very sparse representation), and exchanging its
representation for words with the corresponding embedding (thus using a more condensed,
linguistically based, encoding).

We test the “plug in” approach, testing the improvement over the task of POS tagging.

5.4.1.1 Improving POS tagging

We test a Conditional Random Field (CRF) [24, 35] model performance, when changing the
words indexes for our Hebrew embeddings over labeled data. We compare against baseline
of using the same CRF model without the embeddings, and against state of the art Hebrew
POS tagging [5].

5.4.2 Testing Tree Matching as Paraphrase Indicator

In order to test if tree matching reduction of paraphrasing is indeed a a valid hypothesis,

we test its validity using a common train-test partition of a paraphrase corpus.

5.4.3 Testing Dependency vs Constituency Parse Trees

As was discussed throughout the work, there are several possible definitions of parse trees.
We have focused on dependency and constituency parse trees. In addition we have defined
a binarization on both formats, which is an obligatory stage in order to later autoencode
the trees. In order to compare both formats and their respective binarization, we run the

previous tests both on binary dependency and binary constituency parse trees.
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Chapter 6

Experimental Setting and Results

This chapter gives practical information regarding the corpora on which experiments are

conducted, and the results obtained.

6.1 Experimental Setting

This section describes in detail the corpora used for training models in this work, by means

of its statistical distribution and its size.

6.1.1 Embeddings Generation Corpus

The corpus used for the embeddings generation is a large corpus of the news domain. The
details of this corpus are given in table 6.1. This corpus is divided into 5 sections ordered

by complexity (how common the words are).

6.1.2 Autoencoding of Parse Trees Training Corpus

The same corpus described in Section 6.1.1 is used for the training of parse trees. Since this
corpus is formed from natural language sentences, we can parse it and use it as a training

corpus for sentences, as opposed to the previous section which took it as a source for 5-grams.

Table 6.1: Size of the Different Corpora used for Embeddings computation

Dictionary | Size (in tokens)

Full 131M
5K 63.6M
10K 110.3M
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6.1.3 Labeled Paraphrase Corpus

This corpus is used for testing the proposed method for paraphrase identification in a su-
pervised manner. It is composed of matched headlines from leading news sites. The size of
the overall news wire corpus, before searching for paraphrases is of size of about 1.4 Million

news headlines.

6.2 Results

Each of the following sections deals with the expected results of a single experiment:

6.2.1 Embeddings

This experiment sets out to test the improvement of using the generated embeddings on
a general NLP task. The task we test is POS tagging. We use the CRFSuite package
[28] to train and test a POS classifier, with and without embedding features, and record
the embeddings improvement over the test set. We start by testing the equivalent C&W
embeddings on the task of English POS tagging, to achieve baseline expected enhancement
measures, and continue by testing the same on Hebrew POS tagging task.
6.2.1.1 Annotations
These are the notations used throughout this section when describing CRF feature sets:

e w[i] - The word located at the i’th location within a given sequence.

e [[i] - The POS tag of wli].

e ¢[i][j] - The j’th embedding feature of w]i].

6.2.2 English POS Tagging
6.2.2.1 Corpus

The dataset used for English is the CoNLL 2000 dataset. This dataset consists of approxi-
mately 220K words (organized in 9K sequences) for training, and 50K words (organized in
2K sequences) for testing. Each word is tagged for POS and BIO tags.

6.2.2.2 Experiments

Upon this dataset, two experiments were run. The results are summarized in Table 6.2.

Following is a description of each of the experiments:

Baseline: This experiment aims at setting baseline results for the next experiment. The

feature set for tag located at position ¢ within a sequence is:
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o wit+1]
o wit+ 2]
o wt — 1]jwlt]
o wlt]wlt + 1]
o [[—1]
e A special start | end of sequence symbol.
CW: This experiment aims at testing the improvement induced by Collobert and Weston

(CW) embeddings upon the baseline results. The CRF features for word located at

index ¢t within a sequence were those of previous experiment, in addition to:
o c[t][0] — e[t][99]

These features were added where embeddings exists for w(t]

Table 6.2: Experimental Results for English POS Tagging

Experiment | Acc | F1

Baseline 0.928 | 0.870

Cw 0.961 | 0.926

6.2.2.3 Discussion

Turian [38] did not include this task in his article, while C&W did - although in their
experiment the embeddings changed in the course of the POS training, as part of the deep
learning architecture. It seems that C&W word embeddings are capable of significantly

improving (3% in accuracy, and 6% in F1) POS tagging task also as a CRF plug-in enhancer.

6.2.3 Hebrew POS Tagging
6.2.3.1 Corpora

Three corpora were used to measure the improvement of word embeddings. TB1 and A7
are two different corpora, while All is the concatenation of them. All of these were tagged
for POS and segmented. The size statistics of these datasets are shown in table 6.3. A tag

histogram is shown in figure 6.1.
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Table 6.3: Hebrew corpora statistics. Values show size in #tokens and #sequences

Corpus | Training | Testing

TB1 91K /4K | 18K / 750

A7 104K / 5K | 21K / 1K

All 195K / 9K | 40K / 2K

Tag Histogram per Corpus
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Figure 6.1: Tag Distribution Histogram

6.2.3.2 Analysis of Corpora

Several experiments were conducted to measure relevant statistics with regards to these

corpora. For comparison, the same statistics were measured also against the CoNLL corpus.

6.2.3.2.1 Unknown Tokens This experiment measures the percentage of occurrences
of tokens for which there is no embedding available. Results are given in Table 6.4. Note that
the unknown words rate is much higher in the Hebrew corpora than in English (reflection of
the larger number of word forms in Hebrew than in English, because of the rich morphology

in Hebrew, and the smaller corpus sizes that we have available).

Table 6.4: Unknown Token Percentage

Corpora | Train Test
TB1 27334 % | 27.723 %
A7 21.604 % | 21.473 %
All 24.324 % | 24.114 %
CoNLL | 2.0% 2.362 %

6.2.3.2.2 Ambiguous Tokens This experiment measures the percentage of occurrences
which appear in the corpora with several different POS tags. The results are grouped by
the number of different possible tags for a single token. Results, in the form of an histogram

per corpus, are shown in figure 6.2. A rougher division can part each corpus entry as either
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Figure 6.2: Ambiguous Tokens Distribution Histogram

ambiguous (meaning, a token which has more than one tag available), and un-ambiguous
(meaning, there is only one tag available for this token). This division statistics is available

in table 6.5.

Table 6.5: Percentage of Ambiguous Tokens

TB1 AT All CoNLL

66.24 % | 32.67 % | 69.18 % | 32.71 %

Note again that ambiguity is much higher in Hebrew than in English (69% vs. 33%) and
that ambiguity on All is higher than on each sub-corpus because words that appear with a

single tag in each subcorpus can appear with two distinct tags in the combination.

6.2.3.3 Experiments

Several tests were ran to achieve baseline results. These ran on each of the corpora described
above. Following the baseline results, and similar to the course taken in Section 6.2.2,

embeddings were added as features to test their improvement.

Baseline: In addition to using a similar feature set to that described in 6.2.2.2, another
dimension of the number of previous tags was added. For example, when the number
of previous tags is 2, the following features are added: {[—2],1[—1]. These experiments
ranged from zero previous tags up to three previous tags, thus, in total, 12 experiments
were ran. Their results are summarized in Table 6.6 and graphically in Figures 6.3

and 6.4.

HebEmbeddings: Upon each of these corpora, a CRF training session with feature sets
similar to those of Section 6.2.2.2 (with one previous tag, as was done for English

dataset), was conducted. The embedding features e[t][0], ..., e[t][99] are the embed-
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Table 6.6: Hebrew Baseline Results. Values show Acc / F1

Num of previous tags 0 1 2 3
TB1 0.867 / 0.725 | 0.879 / 0.735 | 0.881 / 0.740 | 0.881 / 0.748
A7 0.909 / 0.696 | 0.910 / 0.701 | 0.910 / 0.703 | 0.910 / 0.698
All 0.861 / 0.644 | 0.866 / 0.662 | 0.868 / 0.660 | 0.869 / 0.664
Accurcy of CRF for different corpora
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Figure 6.3: Hebrew Baseline Accuracy Percentage on Different Corpora and Feature Set
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Figure 6.4: Hebrew Baseline F1 Percentage on Different Corpora and Feature Set
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ding calculated during the course of this work and available online [37]. Results are

summarized in Table 6.7

Table 6.7: Hebrew Embeddings Results. Values show Acc / F1.

without embeddings | with embeddings
TB1 | 0.879 / 0.735 0.900 / 0.804
AT 0.910 / 0.701 0.940 / 0.821
All | 0.866 / 0.662 0.880 / 0.723

6.2.3.4 Discussion

Several observations can be made, based on the Hebrew experiments:

e In all cases, the Hebrew embeddings enhanced performance, both in accuracy measure
(1% - 3%), as well as in F1 measure (6% - 12%). This is in accordance with the

previously shown English results.

e There is less improvement found in TB1 and All corpora (see table 6.7). This can
be associated with the fact that the maximum number of unknown tokens is found in
TB1 (see table 6.4). In fact, there is a correlation between the percentage of known

tokens and the rate of improvement gained by the addition of embeddings.

e There is a drop in performance when testing the All corpus, in comparison to testing
its two components. The drop is mainly in F1 measure. We hypothesize this is due to
different conventions and guidelines used for tagging POS of TB1 and A7 corpora. A
supporting evidence for this can be the fact that the percentage of ambiguous tokens
reaches its maximum in All corpus (see table 6.5), this is due to the fact that about
7K non-ambiguous tokens in TB1 and A7 receive different tags in both corpora - thus

rendering them ambiguous in All.

6.2.4 Paraphrasing
6.2.4.1 Corpus

A corpus of 1.6 K pairs of sentences was collected from matching news articles from different
Hebrew news sites. The average sentence length was 9.6 words. These pairs were manually
annotated by two human taggers as being either Paraphrase, Partial Paraphrase, or Nega-
tive, according to the Tagging Guidelines which appear as an Appendix.

The corpus can be divided into three categories according to the human tagging:
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o AGREE - Pairs on which both taggers gave the exact same tagging.

e MISMATCH - Pairs on which taggers did not agree, yet one of the taggers tagged as

"Partial Paraphrase”.

e DISAGREE - Pairs which do not fall to any of the above categories, i.e pairs on which

human taggers tagged the opposite.

The distribution of the corpus according to these terms is shown in table 6.8.

Table 6.8: Category Distribution Over the Paraphrase Corpus

Category Percent
AGREE 70%
MISMATCH 29%
DISAGREE 1%

A couple of examples of pairs of sentences which belong to the DISAGREE category

follow:

I The Saudi stock market had lost 6.8% vs The Saudi stock market had lost
6.78%

6.87 % - 2 NNIX TPTIWON NOMIN

6.8 % - 2 NNIX TPTIVON NOMIN

IT The High Court to the State Attorney: FEzxplain the mistakes done in the

dealing with Galant’s lands vs The High Court to the State Attorney: Ex-
plain the correction of mistakes done in the dealing with Galant’s lands

LIZ) NMYPIPA NNV INYLN X A0 : YWNIYPY N

V) MYPIP VI MYV PPN DY 110N : YNRYPY XA

When taking into account only pairs which belong to the AGREE category, we get the

paraphrase corpus which consists of 1273 pairs. The tag distribution over this corpus is

given in Table 6.9. The following experiments are conducted over this corpus.

Tag Percent

Paraphrase 43.3%

Partial 25.2%

Negative 31.5%

Table 6.9: Category Distribution Over the Paraphrase Corpus
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6.2.4.2 Paraphrase Identification

We tested the Tree Matching algorithm described in this work over the corpus described
in the previous section. Best results were obtained using dependency parsing, and after

training the classifier for 50 epochs. The results are shown in Table 6.10

Table 6.10: Tree Matching Algorithm Performance

Parse Type Performance(ACC/F1)

Dependency | 74.38 / 80.35

Counstituency | 69.20 / 74.83

6.2.4.3 Discussion

The results are compatible with the obtained state of the art results for the English task
(about 2% lower), which is a positive result in applying Hebrew adapted paraphrase identifi-
cation algorithms. The decrease in performance when using constituency trees can perhaps
be explained due to the much larger trees which are produced by this parsing method.
Such an increase in size can produce more noise to the system, and a consecutive drop in

performance.
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Chapter 7

Conclusion

The objective of this work is to research the field of paraphrasing in Hebrew, providing first
results in a field in which English research has gained a lot of interest and focus in recent
years. The focus was set on the task of paraphrase identification.

We developed a method to identify if an input pair is in a paraphrase relationship, via
adapting English state of the art algorithms, and providing modification of these.

The datasets we use are:
e A large news wire corpus, preprocessed with POS information, and segmentation.

e A large corpus of Hebrew paraphrases, formed in a parallel corpus of news wire head-
lines. This corpus was obtained in an unsupervised manner, by scraping major Hebrew

news sites.

We run several experiments on these datasets, aiming at proving the hypotheses raised
during the course of this work. The main experiment aims at assessing the validity of the
proposed system as Hebrew paraphrase identifier. This consists of splitting the corpus of
paraphrases in a train-test split and checking it performance via the standard statistical
metrics.

The results indicate that Hebrew paraphrase identification is a feasible task, when com-
paring against result in the English equivalent field.

The main contributions of this work is:

e Showing the feasibility of paraphrase identification in Hebrew, and establishing first

results close to state of the art levels in English.

e Providing Hebrew resources for later paraphrasing tasks (a paraphrase corpus), as well
as for more general Hebrew NLP tasks (Collobert and Weston embeddings as a plug

in enhancer).

As future work, we would like to further the research in the following optional directions:
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e Explore the usage of the products of this work as tools for other paraphrase related

tasks, such as paraphrase generation, and textual entailment.

e Test the paraphrasing identifier as a component in a more complex system of NLP or
NLG, such as automatic multi-text text summarization, text generation system which

is targeted for a specific audience.

e Use the word embeddings produced in this work in other NLP tasks.
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Appendix A

Proof of Tree Matching NP

Completeness

This section provides a proof for the NP completeness of tree matching as described in

section 5.2.4. We will do this by showing that
I Tree Matching € NP
IT Positive SubsetSum <, Tree Matching

Since Positive SubsetSum (PS) is an NP-Complete problem (is a variation of one of Karp’s 21
NP-Complete problems[22]), proving these yields that Tree Matching (TM) is NP-Complete.

We continue by formally defining the PS decision problem, and the TM decision problem.

Definition Given a set of k positive integers S = (ny,...,n;) and a target positive integer
t, the PS decision problem is finding if there is a subset of S which sums exactly to .

Formally:

PS={({m,m} EN' HEN) ST CILE] + D omj =t}
JET

Definition Given a two binary trees 77, T which each nodes contain a 100 dimensional
vector of numbers, and a target positive integer ¢, the TM decision problem is finding if there

is a Tree Matching M of Ty, T5 for which S(M) = t. (Recall section 5.2.4 for definitions)

Formally:
™™ ={ ((T1,T2), te N) | I M amatch of 71,75 : S(M) =1t}

Proof. Following these definitions we go on to prove that:

I TM € NP A straight forward approach can yield a simple linear verification algorithm
which receives a pair of trees (77, T3), a target integer ¢, and a match M. The algorithm

will compute the score of M (denoted S(M)) and will output “YES” iff S(M) = t.
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II PS <, TM

Reduction: We will build a function f that receives ( S = {ny,...,n.} € N¥, + € N ) and
returns ( (71,7%), t' € N) for which:

(S,t) ePS & ((Tl,Tg),t,) eTM
f produces its output in the following manner:

1. ¢+t
2. T is a binary tree which complies to:

* Contains k leaves, marked 1, ..., [j.
x The fathers of all leaves have only one son. Mark them as p1, ..., pg.
s All inner nodes contain 0 as their 100 dimensional vector.

* [; contains (%,0,...,0) as its 100 dimensional vector.
2. Ty is a binary tree which complies to:

* Contains k leaves, marked rq, ..., 7.
* All inner nodes contain (0,¢,0,...,0) as their 100 dimensional vector.

* r; contains 0 as its 100 dimensional vector.
Correctness:

1. (S,t)e PS = ((Th,Tz),t') e TM
Assume (S = {ny,..,nx},t) € PS = IT C[1,k] : Tjern; =t
We will define a matching M of 17, Ts:

- YieT : (li,Ti> eM

— VZ%T : (pi,T'i) eM

It is clear that M is indeed a Match, since for each leaf we either add it (first case),

or its father (second case). Thus, we calculate the score of the match:

S(M) = Sier||liyrill -2 + Sigrllps,mill -3 =

n;
= Tier3 2 + Tigr0-3 =
=%ierni =t =t

Therefore ((11,13),t') € TM

2. (T, Tw),t'y e TM = (S,t) e PS

Assume ((T1,732),t") € TM = 3IM a Match, for which S(M) =+t =t.

We will use a lemma that will be proven later that M must be formed of exactly k
pairs of the form (x,7;) (otherwise, by the construction of the trees, the score must be

greater).
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Following the lemma it is clear that M = M; | J M3, where M; contains only pairs of
the form (li,’l“j) and M, = M\Ml = { (mi,’l“j) eM : x ¢ {ll,...,lk} } Thus:

t=SWM)=3%q, rperm Wil -2 + e, renm, i rjll- 3=
= E(liﬂ'j)eMl ||liarj|| ‘2 = Z(li,rj)el\/h g

We see there is a subset of S which sums to ¢ = (S,t) € PS
O
Lemma A.1 S(M)=t¢ = M must be formed of exactly k pairs of the form (x,7;)

Proof. Assume by negation that there exists a match M of Ty, Ts, for which S(M) =t and

that there exists a pair (z,y) € M s.t

HAS Tlv Y S T27 Yy ¢ {Tlv‘”vrk}

Mark as ¢ > 2 - the number of spanned leaves by = and .
Note, that by the formation of the trees, we get ||z,y|| = /({t—0)2+% > ¢

Thus:

SM) > |lzyyll-c > lx,yl|-2 > 2t > ¢t

In contradiction with the assumption that S(M) =1 .



Appendix B
Paraphrase Tagging Guidelines

B.1 Goal

The goal of tagging is to find sentences and parts of sentences which convey identical, or

near-identical, information, articulated in different forms.

B.2 Rules for Tagging

Given two sentences S1, Se, the annotator should decide between the following options:

B.2.1 Paraphrase
the pair would be considered a paraphrase in the following case:
1. A human who fully accepts S, must therefore accept Sy as a whole.

2. The same holds for the second direction as well. Namely, accepting S, must yield

acceptance of Sj.

B.2.1.1 Restrictions

e The acceptance can derive also by former knowledge, yet it must not be based solely

on it. (examples 1,2)

e The pair will be considered as a paraphrase, when there is sufficient confidence that

they indeed convey the same information. (example 3)

e Given a pair for which their meaning is ambiguous (for example - there is not enough
information to be certain regarding the identities which appear in them). One must
assume that the ambiguity is solved in such a way that the pair relate to same incident.

(example 4)
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e The pair should be judged from a timeless point of view. Namely, if the pair relate
the same information, yet treat it from a different point in time - it should be tagged

as paraphrase.

e The pair should be judges from a location-less point of view. Namely, if the same
incident is reported, yet it is regarded from a different relative point of view, it should

be considered paraphrase.

e If one of the sentences, or both of them, contain additional information, or contradic-

tory information, the pair should not be tagged as a paraphrase.

B.2.2 Partial Paraphrase

If 51,55 are not paraphrases, by the definition given above, yet certain clauses can be
removed to form a paraphrase, then Si, 52 should be tagged as partial paraphrases. The

additional clauses should be annotated as such. (example 6)

B.2.3 Negative

A catch-all rule. If S7,55 do not fall under any of the previous tags, then they should be

tagged as Negative, meaning they do not convey any shared information.

B.3 Examples

1. 51 - PO DY LA IND DIONY NYIN PO
China has reached an oil trade contract with Russia
Sy - PO DY LA NDN BIDN JY NHPIN DY NOIINNN NPTNN
The world most populated nation has reached an oil trade contract with Russia
Tag: Paraphrase.
(It is of common knowledge that China is the world most populated nation)

2. 57 - PO DY LA IND DIONY NY)HN PO
China has reached an oil trade contract with Russia
Sy - DA NOINNN NYTINN NN PO
China is the world most populated nation.

Tag: Negative.
(Although the second sentence is true, it does not follow from the first, nor does the

second derives the first).

3.5 - PN MPNYN NND 2"NIN

USA has closed its embassy in Syria.



APPENDIX B. PARAPHRASE TAGGING GUIDELINES 60

So - JPNON NPNY IR NPINN 2"NIN
USA has called its ambassador back from Syria.
Tag: Paraphrase.
(It is very probable to assume that closing the embassy yields calling back the ambas-
sador, and vice versa)

4. S - PN DIMINRN DVIRD IR NP0 HVIN
The network has covered latest events in Syria.
So - N0 MNINRD IMVYNINNN IY NMPT NIRION Y
Al Jazira network has passed reports of the latest happenings in Syria.
Tag: Paraphrase.
(It should be assumed that the network mentioned in the second sentence is the same
network mentioned in the first sentence)

5. 57 - JYURT DY YAV INAT PN NN TPAVYR NI
Trains will not work on the line to Beer Sheva this Sunday, due to strike.
Sy - YAV INAD PN X NI PPOAN NI
Trains will not work on the line to Beer Sheva tomorrow, due to strike.
Tag: Paraphrase.
(Although the pair convey the same information from different points in time, it should
be regarded as paraphrase)

6. S - NN RN 190 NN POIN WPNRY DY ¥ 1IN P
Benyamin Netanyahu has met with his Russian counterpart, an later returned to Israel.
Sy - DOVUTNN DN IPND NN P91 P8 PON 17>3|7)3 DY TYN NN PIdid

Benyamin Netanyahu has met with his Russian counterpart, and mentioned to him

the issue of Israeli immigrants from Russia.
Tag: Partial Paraphrase.
(Without the marked parts, the pair consists a paraphrase)

7. 51 - DPYXN OXOMNNN 2192 ONI P92 TINN
Ehud Barak spoke in front of new army recruits.
Sy - NINAD TPNITRO M TRV WIND VONN P72 TN
Ehud Barak decided to run for the next elections.

Tag: Negative.
(Both sentences do not convey the same information, nor can any clauses can be

removed from them so that they do)



