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« Many semantic applications require multiple texts consolidation. OKR Annotation of 1257 news-related tweets from 27 event clusters, collected from the Twitter Event

For example: Detection Dataset (McMinn et al., 2013). We used QA-SRL paradigm (He et al., 2015) to annotate
3 people dead in shooting in Wisconsin. semantic roles.

Man Kills three in spa shooting.
kShooter was Identified as Radcliffe Haughton, 45.

Our goal — “out of the box” consolidated semantic representation Annotated dataset

« Annotation example:

DOWNLOAD OUR
- Question answering: ﬁpic #1 tweet #1: Turkey forced a plane to land \ ANNOTATED
»  How many people did Radcliffe Haughton shoot? 3 people Topic #1 tweet #2 . The grounded Jet landed CORPUS!
« Absractive summarization: Entities:
« Radcliffe Haughton, 45, kills three in spa shooting in Wisconsin. E1: Turkey

E2 : Jet=>» plane
e And more...

Propositions:

P1: Al landed <> Al to land
* Current predicate-argument semantic structures (Open IE, SRL, AMR, etc.) are at a single sentence A1 - what did land? E2

level.

P2: grounded Al =» A2 forced Al to A3
Al - what was forced to do something?: E2 |
http://u.cs.biu.ac.il/~nlp/resources

» e propose: a generic consolidated semantic structure, for all applications! A2 - what did force something to do something?: E1 o T T ———
A3 - what was something forced to do?:P1

» Therefore, the consolidation is currently done at the application level, to various partial extent.
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Multiple .
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Baseline & results

OKR representation We created a simple baseline consisting of the separate OKR pipeline tasks, implemented individually:
« Entity extraction — spaCy NER and annotating all nouns as entities.

* Proposition extraction - Open IE propositions extracted from PropS (Stanovsky et al., 2016).

* Proposition and Entity coreference — simple lexical similarity metrics (e.g., lemma matching and

* OKR structure is built using a pipeline of well-known NLP tasks:

Consolidated proposition P1.:

_evenshtein distance).
/ E1 \ « Argument alignment — align all mentions of the same entity.
» {ME;E‘*;DH » Entity Entailment - knowledge resources (Shwartz et al., 2015) and a pre-trained model for
Radoliff ALL HypeNET (Shwartz et al., 2016).
NO o dead in T3 Haughton} ORIGINAL  Predicate Entailment - rules extracted by Berant et al. (2012).
a ead In |a
REDUNDANT | ([22 [a3], - MENTIONS
DATA ? {3 people SAVED AND Baseline results (compared to inner-annotator agreement):
a2
[31] kills [32] N [33] } ¢ ALIGNED Entity Entity Proposition extraction Predicate Entailment
three} Extraction  Coref. (avg. accuracy) coreference (F1)
(avg. accuracy) (CoNNL F1) (CoNNL F1)
P2 Predicates Arguments Entities Predicates
= {shooting}
Agreement .85 .90 .74 | Verb.  Non .85 .83 .70 .82
verb.
93 | .72
Predicted .58 .85 41 Verb.  Non .37 .56 44 .56
verb.
4 o 73 25
Entailment between
corefering mentions . Main challenges:
\_ J —Recognize arguments for nominal predicates - current systems are verb-centric (well known).
—Distinguish entity nouns from predicate nouns (organization vs. elections).
4 ) —Entity entailment is hard for multi-word expressions.

P1:1(3 people, dead in, shooting), (Man, kills, three)} —Predicate coreference is harder than entity corefernce.

Arguments alignment . . : : .
& E P2: {(shooting in, Wisconsin), (spal shooting)}
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