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Semantic Dependency Parsing (SDP)

® A collection of three semantic formalisms (Oepen et al., 2014;2015)
a. DM (derived from MRS)
b. Prague Semantic Dependencies (PSD)
c. Predicate Argument Structures (PAS)

® Aim to capture semantic predicate-argument relations

® Represented in a graph structure
a. Nodes: single words from the sentence
b. Labeled edges: semantic relations, according to the paradigm
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Semantic Dependencies as MT

® Standard MTL: 3 tasks

Raw sentence

® Inter-task translation (9 tasks)



Outline

e Model
o  Seq2Seq
O Linearization



Our Model I :Raw ->SDP*

® Seq2Seq translation model:
o  Bi-LSTM encoder-decoder with attention

[ Linear DM ]

EYYTYYITTY

---m”

<from: RAW>  <to: DM> the the mat




Our Model I :Raw ->SDP*

® Seq2Seq translation model:
o  Bi-LSTM encoder-decoder with attention

[ Linear DM ]

EYYTYYITTY

---m”

<from: RAW>  <to: DM> the the mat

Special from and to symbols



Our Model II : SDPY -> SDP*

® Seq2Seq translation model:
O  Bi-LSTM encoder-decoder with attention

[ Linear DM ]
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<from: PSD>  <to: DM> [ Linear PSD ]

Special from and to symbols




Our Model

Seq2seq prediction requires a 1:1 linearization function

Linear‘SDP’.‘

5B 8 888888

<from: SDPY>  <to: SDP*> Linear SDPV
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Linearization: Background

® Previous work used bracketed tree linearization
(ROOT (NP (NNP John )NNP )NP (VP messaged (NP Alice )NP )VP )ROOT

(Vinyals et al., 2015; Konstas et al., 2017; Buys and Blunsom, 2017)

® Depth-first representation doesn’t directly apply to SDP graphs
o Non-connected components
o  Re-entrencies
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SDP Linearization (Connectivity)

® Problem: No single root from which to start linearization
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® Solution: Artificial SHIFT edges between non-connected adjacent words
o All nodes are now reachable from the first word
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® Re-entrancies require a 1:1 node representation

(relative index / surface form)
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e Results
o  Raw text -> SDP (near state-of-the-art)
o Novel inter-task analysis
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Experimental Setup

® Train samples per task: 35,657 sentences (Oepen et al., 2015)
o  9translation tasks

e Total training samples: 320,913 source-target pairs

® Trained in batches between the 9 different tasks
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PAS 95.7 017 93.7
PSD 89.5 87.6 88.6
Avg. 926 919 921

Labeled F1 score

e Translating between representations is easier than parsing from raw text
e Easy to convert between PAS and DM
® PSDis agood input, but relatively hard output
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Conclusions

e Effective graph linearization for SDP
o  Near state-of-the-art results

® Inter-task analysis
o Enabled by the generic seq2seq framework

e Future work

o Apply linearizations in downstream tasks (NMT)
o Add more representations (AMR, UD)

Thanks for listening!
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Evaluations: Node ordering

e Smaller-first ordering consistently does better across all representations

DM PAS PSD Avg.
Random 86.1 87.7 784 84.1
Sentence order 87.2 90.3 799 85.8
Closest words 87.5 89.8 79.7 85.8
Smaller-first 87.9 90.9 80.3 86.2

Points scored

DM PAS PSD

B Random
B Sentence-order
Closest-first

B Smaller-first



Semantic Formalisms

e Many formalisms try to represent the meaning of a sentence
o MRS, AMR, PSD, SDP, etc...

e ARG2

—
/(compoundk [(ARGI}\ / (compound) compound]x (ARG1) (ARG1)| |(ARG1) (ARG2)
/ , ! [ W [\
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Semantic Dependencies as MT

® Syntactic parsing as MT (“Grammar as a foreign language”, [Vinyals et. al, 2014])

Jane hadacat — (zoor (s (wp Jane )yp (vp had (vp acat)yp )yp - )s )roOT

e \We aim to do the same for SDP

o The different formalisms as foreign languages



Semantic Dependencies as MT

Raw text
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DM



Our Model

® Seq2Seq translation model:
o  Bi-LSTM encoder-decoder with attention

e Two shared encoders
o From raw to SDP graphs
o  Between SDP graphs

® One global decoder for all samples

® Add “<from:X> <to:Y>” tags to input as preprocessing
o WhereX, Y in{RAW, PSD, PAS, DM}
o Different than Google’s NMT, which didn’t have <from:X> tags

u No “code-switching” is allowed
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Motivation

® Linearization is an easy way to plug-in predicted structures in NNs
o  MT Target side syntax

(Aharoni and Goldberg, 2017; Wang et al., 2018)

® Allows Inter-task analysis

e Easily extendable framework
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® Neighbor orderings:

d. Smaller-first - (now, play, for, jocks)



Evaluations: Node ordering

e Smaller-first ordering consistently does better across all representations

DM PAS PSD Avg.

Random 86.1 87.7 784 84.1
Sentence order 87.2 90.3 79.9 85.8
Closest words 87.5 89.8 79.7 85.8
Smaller-first 879 909 80.3 86.2

Labeled F1 score



