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● A collection of three semantic formalisms (Oepen et al., 2014;2015)

a. DM (derived from MRS)

b. Prague Semantic Dependencies (PSD)

c. Predicate Argument Structures (PAS) 

● Aim to capture semantic predicate-argument relations

● Represented in a graph structure
a. Nodes: single words from the sentence

b. Labeled edges: semantic relations, according to the paradigm
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Our Model 

Linear SDPx

Linear SDPy<from: SDPy> <to: SDPx> 

Seq2seq prediction requires a 1:1 linearization function
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Linearization: Background

● Previous work used bracketed tree linearization  

           (ROOT (NP (NNP John )NNP )NP (VP messaged (NP Alice )NP )VP )ROOT

(Vinyals et al., 2015; Konstas et al., 2017; Buys and Blunsom, 2017) 

● Depth-first representation doesn’t directly apply to SDP graphs 
○ Non-connected components

○ Re-entrencies
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● Re-entrancies require a 1:1 node representation

(relative index / surface form)
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● SDP as Machine Translation

○ Motivation: downstream tasks

○ Different formalisms as foreign languages

● Model
○ Linearization

○ Dual Encoder-Single decoder Seq2Seq

● Results
○ Raw text -> SDP (near state-of-the-art)

○ Novel inter-task analysis
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Experimental Setup

● Train samples per task: 35,657 sentences (Oepen et al., 2015)
○ 9 translation tasks 

● Total training samples: 320,913 source-target pairs

● Trained in batches between the 9 different tasks
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● Translating between representations is easier than parsing from raw text

● Easy to convert between PAS and DM 

● PSD is a good input, but relatively hard output

Labeled F1 score
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Conclusions

● Effective graph linearization for SDP
○ Near state-of-the-art results  

● Inter-task analysis
○ Enabled by the generic seq2seq framework

● Future work
○ Apply linearizations in downstream tasks (NMT)

○ Add more representations (AMR, UD)

Thanks for listening!
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Evaluations: Node ordering
 ● Smaller-first ordering consistently does better across all representations



Semantic Formalisms

● Many formalisms try to represent the meaning of a sentence
○ MRS, AMR, PSD, SDP, etc…



Semantic Dependencies as MT

● Syntactic parsing as MT (“Grammar as a foreign language”, [Vinyals et. al, 2014])

Jane had a cat

● We aim to do the same for SDP

○ The different formalisms as foreign languages



Semantic Dependencies as MT

Raw text

PSD

DM

PAS



Our Model

● Seq2Seq translation model:
○ Bi-LSTM encoder-decoder with attention 

● Two shared encoders
○ From raw to SDP graphs

○ Between SDP graphs

● One global decoder for all samples

● Add “<from:X> <to:Y>” tags to input as preprocessing
○ Where X, Y in {RAW, PSD, PAS, DM}

○ Different than Google’s NMT, which didn’t have <from:X> tags
■ No “code-switching” is allowed
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Motivation

● Linearization is an easy way to plug-in predicted structures in NNs
○ MT Target side syntax 

(Aharoni and Goldberg, 2017; Wang et al., 2018)

● Allows Inter-task analysis

● Easily extendable framework
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SDP Linearization 

● Neighbor orderings:

a. Random

b. Closest-first

c. Sentence-order

d. Smaller-first - (now, play, for, jocks)



Evaluations: Node ordering
 ● Smaller-first ordering consistently does better across all representations

Labeled F1 score


