Semantics as a Foreign Language

Gabriel Stanovsky and Ido Dagan EMNLP 2018

• A collection of three semantic formalisms (Oepen et al., 2014;2015)

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS) (Copestake et al., 1999, Flickinger, 2000)

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD) (Hajic et al., 2012)

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD)
 - c. Predicate Argument Structures (PAS) (Miyao et al., 2014)

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD)
 - c. Predicate Argument Structures (PAS)
- Aim to capture **semantic** predicate-argument relations

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD)
 - c. Predicate Argument Structures (PAS)
- Aim to capture **semantic** predicate-argument relations
- Represented in a graph structure

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD)
 - c. Predicate Argument Structures (PAS)
- Aim to capture **semantic** predicate-argument relations
- Represented in a graph structure
 - a. Nodes: single words from the sentence

- A collection of three semantic formalisms (Oepen et al., 2014;2015)
 - a. DM (derived from MRS)
 - b. Prague Semantic Dependencies (PSD)
 - c. Predicate Argument Structures (PAS)
- Aim to capture **semantic** predicate-argument relations
- Represented in a graph structure
 - a. Nodes: single words from the sentence
 - b. Labeled edges: semantic relations, according to the paradigm

- SDP as Machine Translation
 - Different formalisms as foreign languages
 - **Motivation**: downstream tasks, inter-task analysis, extendable framework

- SDP as Machine Translation
 - Different formalisms as foreign languages
 - **Motivation**: downstream tasks, inter-task analysis, extendable framework
 - Previous work explored the relation between MT and semantics (Wong and Mooney, 2007), (Vinyals et al., 2015), (Flanigan et al., 2016)

- SDP as Machine Translation
 - Different formalisms as foreign languages
 - **Motivation**: downstream tasks, inter-task analysis, extendable framework
 - Previous work explored the relation between MT and semantics (Wong and Mooney, 2007), (Vinyals et al., 2015), (Flanigan et al., 2016)
- Model
 - Seq2Seq
 - Directed graph linearization

- SDP as Machine Translation
 - Different formalisms as foreign languages
 - **Motivation**: downstream tasks, inter-task analysis, extendable framework
 - Previous work explored the relation between MT and semantics (Wong and Mooney, 2007), (Vinyals et al., 2015), (Flanigan et al., 2016)
- Model
 - Seq2Seq
 - Directed graph linearization
- Results
 - Raw text to SDP (near state-of-the-art)
 - Novel inter-task analysis

• SDP as Machine Translation

- Different formalisms as foreign languages
- **Motivation**: downstream tasks, inter-task analysis, extendable framework
- Previous work explored the relation between MT and semantics (Wong and Mooney, 2007), (Vinyals et al., 2015), (Flanigan et al., 2016)

- Model
 - Seq2Seq
 - Linearization
- Results
 - Raw text -> SDP (near state-of-the-art)
 - Novel inter-task analysis

Source

Raw sentence

Target

• Standard MTL: 3 tasks

• Standard MTL: 3 tasks

• *Inter-task* translation (9 tasks)

- SDP as Machine Translation
 - Motivation: downstream tasks
 - Different formalisms as foreign languages

• Model

- Seq2Seq
- Linearization
- Results
 - Raw text -> SDP (near state-of-the-art)
 - Novel inter-task analysis

Our Model I : Raw -> SDP^x

- Seq2Seq translation model:
 - Bi-LSTM encoder-decoder with attention

$Our \ Model \ I : \mathsf{Raw} \rightarrow \mathsf{SDP}^{\mathsf{x}}$

- Seq2Seq translation model:
 - Bi-LSTM encoder-decoder with attention

Our Model $II : SDP^{y} \rightarrow SDP^{x}$

- Seq2Seq translation model:
 - Bi-LSTM encoder-decoder with attention

Our Model

Seq2seq prediction requires a 1:1 linearization function

• Previous work used bracketed tree linearization

 Previous work used bracketed tree linearization (ROOT

 Previous work used bracketed tree linearization (ROOT (NP

 Previous work used bracketed tree linearization (ROOT (NP (NNP)

• Previous work used bracketed tree linearization (ROOT (NP (NNP John

 Previous work used bracketed tree linearization
 (ROOT (NP (NNP John)NNP)NP (VP messaged (NP Alice)NP)VP)ROOT

• Previous work used bracketed tree linearization

(ROOT (NP (NNP John)NNP)NP (VP messaged (NP Alice)NP)VP)ROOT

- Depth-first representation **doesn't directly apply to SDP graphs**
 - Non-connected components
 - Re-entrencies

SDP Linearization (Connectivity)

• **Problem: No single root** from which to start linearization

SDP Linearization (Connectivity)

• **Problem: No single root** from which to start linearization

SDP Linearization (Connectivity)

• **Problem: No single root** from which to start linearization

- **Solution**: Artificial SHIFT edges between non-connected adjacent words
 - All nodes are now reachable from the first word

SDP Linearization (Re-entrancies)

• Re-entrancies require a 1:1 node representation

• Re-entrancies require a 1:1 node representation

• Re-entrancies require a 1:1 node representation

(relative index / surface form)

• Re-entrancies require a 1:1 node representation

(relative index / surface form)

0/couch-potato

• Re-entrancies require a 1:1 node representation

(relative index / surface form)

0/couch-potato compound +1/jocks

• Re-entrancies require a 1:1 node representation

(relative index / surface form)

0/couch-potato compound +1/jocks shift +1/watching

• Re-entrancies require a 1:1 node representation

(relative index / surface form)

O/couch-potato compound +1/jocks shift +1/watching ARG1 -1/jocks

Outline

- SDP as Machine Translation
 - Motivation: downstream tasks
 - Different formalisms as foreign languages
- Model
 - Linearization
 - Dual Encoder-Single decoder Seq2Seq

Results

- Raw text -> SDP (near state-of-the-art)
- Novel inter-task analysis

Experimental Setup

- Train samples per task: 35,657 sentences (Oepen et al., 2015)
 - 9 translation tasks

Experimental Setup

- Train samples per task: 35,657 sentences (Oepen et al., 2015)
 - 9 translation tasks
- Total training samples: **320,913 source-target pairs**

Experimental Setup

- Train samples per task: 35,657 sentences (Oepen et al., 2015)
 - 9 translation tasks
- Total training samples: **320,913 source-target pairs**
- Trained in batches between the 9 different tasks

	DM	PAS	PSD	Avg.
Peng et al. (2017a)	90.4	92.7	78.5	87.2
Single	70.1	73.6	63.6	69.1
MTL PRIMARY	82.4	87.2	71.4	80.3
MTL PRIMARY+AUX	87.5	90.9	80.3	86.2
	abeled	F1 sco	re	0.50

Raw text	-	DM	PAS	PSD	Avg.
	Peng et al. (2017a)	90.4	92.7	78.5	87.2
	Single	70.1	73.6	63.6	69.1
¥	MTL PRIMARY	82.4	87.2	71.4	80.3
DM	MTL primary+aux	87.5	90.9	80.3	86.2
	L	abeled	F1 sco	re	

	12	DM	PAS	PSD	Avg.
	Peng et al. (2017a)	90.4	92.7	78.5	87.2
	Single	70.1	73.6	63.6	69.1
	MTL PRIMARY	82.4	87.2	71.4	80.3
PAS	MTL PRIMARY+AUX	87.5	90.9	80.3	86.2
	о —	abeled	F1 sco	re	

	S-	DM	PAS	PSD	Avg.
	Peng et al. (2017a)	90.4	92.7	78.5	87.2
Raw text	Single	70.1	73.6	63.6	69.1
	MTL PRIMARY	82.4	87.2	71.4	80.3
PSD PA	S MTL PRIMARY+AUX	87.5	90.9	80.3	86.2
DM	L	abeled	F1 sco	re	

Evaluations: $SDP_{(a)} \rightarrow SDP_{(b)}$

To \From	DM	PAS	PSD	Avg.
DM		96.1	92.4	94.3
PAS	95.7		91.7	93.7
PSD	89.5	87.6		88.6
Avg.	92.6	91.9	92.1	

Labeled F1 score

Evaluations: $SDP_{(a)} \rightarrow SDP_{(b)}$

To \From	DM	PAS	PSD	Avg.
DM		96.1	92.4	94.3
PAS	95.7		91.7	93.7
PSD	89.5	87.6		88.6
Avg.	92.6	91.9	92.1	

• Translating **between representations** is easier than parsing from raw text

Evaluations: $SDP_{(a)} \rightarrow SDP_{(b)}$

To \From	DM	PAS	PSD	Avg.
DM		96.1	92.4	94.3
PAS	95.7		91.7	93.7
PSD	89.5	87.6		88.6
Avg.	92.6	91.9	92.1	

- Translating **between representations** is easier than parsing from raw text
- Easy to convert between PAS and DM

$Evaluations: SDP_{(a)} \longrightarrow SDP_{(b)}$

To \From	DM	PAS	PSD	Avg.
DM		96.1	92.4	94.3
PAS	95.7		91.7	93.7
PSD	89.5	87.6		88.6
Avg.	92.6	91.9	92.1	

- Translating **between representations** is easier than parsing from raw text
- Easy to convert between PAS and DM
- PSD is a good input, but relatively hard output

- Effective graph linearization for SDP
 - Near state-of-the-art results

- Effective graph linearization for SDP
 - Near state-of-the-art results
- Inter-task analysis
 - Enabled by the generic seq2seq framework

- Effective graph linearization for SDP
 - Near state-of-the-art results
- Inter-task analysis
 - Enabled by the generic seq2seq framework
- Future work
 - Apply linearizations in downstream tasks (NMT)
 - Add more representations (AMR, UD)

- Effective graph linearization for SDP
 - Near state-of-the-art results
- Inter-task analysis
 - Enabled by the generic seq2seq framework
- Future work
 - Apply linearizations in downstream tasks (NMT)
 - Add more representations (AMR, UD)

Thanks for listening!

BACKUP SLIDES

Evaluations: Node ordering

• Smaller-first ordering consistently does better across all representations

	DM	PAS	PSD	Avg.
Random	86.1	87.7	78.4	84.1
Sentence order	87.2	90.3	79.9	85.8
Closest words	87.5	89.8	79.7	85.8
Smaller-first	87.9	90.9	80.3	86.2

Points scored

Semantic Formalisms

- Many formalisms try to represent the *meaning* of a sentence
 - MRS, AMR, PSD, SDP, etc...

Semantic Dependencies as MT

• Syntactic parsing as MT ("Grammar as a foreign language", [Vinyals et. al, 2014])

Jane had a cat $\rightarrow (_{ROOT} (_{S} (_{NP} \text{ Jane})_{NP} (_{VP} \text{ had} (_{NP} \text{ a cat})_{NP})_{VP} .)_{S})_{ROOT}$

- We aim to do the same for SDP
 - The different formalisms as foreign languages

Semantic Dependencies as MT

Our Model

- Seq2Seq translation model:
 - Bi-LSTM encoder-decoder with attention
- Two shared encoders
 - From raw to SDP graphs
 - Between SDP graphs
- One global decoder for all samples
- Add "<from:X> <to:Y>" tags to input as preprocessing
 - Where X, Y in {RAW, PSD, PAS, DM}
 - Different than Google's NMT, which **didn't** have *<from:X>* tags
 - No "code-switching" is allowed

Motivation

- Linearization is an easy way to **plug-in** predicted structures in NNs
 - MT Target side syntax

(Aharoni and Goldberg, 2017; Wang et al., 2018)

• Allows Inter-task analysis

Motivation

- Linearization is an easy way to **plug-in** predicted structures in NNs
 - MT Target side syntax

(Aharoni and Goldberg, 2017; Wang et al., 2018)

Motivation

- Linearization is an easy way to **plug-in** predicted structures in NNs
 - MT Target side syntax

(Aharoni and Goldberg, 2017; Wang et al., 2018)

- Allows Inter-task analysis
- Easily extendable framework

- Neighbor orderings:
 - a. Random (play, for, jocks, now)
 - b. Closest-first
 - c. Sentence-order
 - d. Smaller-first

SDP Linearization

- Neighbor orderings:
 - a. Random
 - b. Closest-first (now, for, play, jocks)
 - c. Sentence-order
 - d. Smaller-first

SDP Linearization

- Neighbor orderings:
 - a. Random
 - b. *Closest-first*
 - c. Sentence-order (jocks, now, for, play)
 - d. Smaller-first

SDP Linearization

- Neighbor orderings:
 - a. Random
 - b. *Closest-first*
 - c. Sentence-order
 - d. Smaller-first (now, play, for, jocks)

Evaluations: Node ordering

• Smaller-first ordering consistently does better across all representations

	DM	PAS	PSD	Avg.
Random	86.1	87.7	78.4	84.1
Sentence order	87.2	90.3	79.9	85.8
Closest words	87.5	89.8	79.7	85.8
Smaller-first	87.9	90.9	80.3	86.2

Labeled F1 score