Recognizing Mentions of Adverse Drug Reaction in Social Media

Gabriel Stanovsky, Daniel Gruhl, Pablo N. Mendes

Bar-Ilan University, IBM Research, Lattice Data Inc.

April 2017

In this talk

- 1. Problem: Identifying adverse drug reactions in social media
 - ► "I stopped taking **Ambien** after three weeks, it gave me a **terrible** headache"

In this talk

- 1. Problem: Identifying adverse drug reactions in social media
 - ► "I stopped taking **Ambien** after three weeks, it gave me a **terrible headache**"

2. Approach

- ► LSTM transducer for BIO tagging
- + Signal from knowledge graph embeddings

In this talk

- 1. Problem: Identifying adverse drug reactions in social media
 - "I stopped taking Ambien after three weeks, it gave me a terrible headache"

2. Approach

- ► LSTM transducer for BIO tagging
- ▶ + Signal from knowledge graph embeddings

3. Active learning

► Simulates a low resource scenario

Task Definition

Adverse Drug Reaction (ADR)

Unwanted reaction clearly associated with the intake of a drug

► We focus on automatic ADR identification on social media

Motivation - ADR on Social Media

- 1. Associate unknown side-effects with a given drug
- 2. Monitor drug reactions over time
- 3. Respond to patients' complaints

CADEC Corpus (Karimi et al., 2015)

ADR annotation in forum posts (Ask-A-Patient)

► Train: **5723 sentences**

► Test: **1874 sentences**

Drug Ratings for AMBIEN

Average Rating: 3.2 (1408 Ratings)

		•
RATING	REASON	SIDE EFFECTS FOR AMBIEN
₩.Α		
1	insomnia due to MS	Sleep was disturbed by waking and vivid dreams. Day after side effects are horrible- dizziness, nausea, diarrhea, headache, severe depression.
1	insomnia	Woke up off and on all night headaches vivid disturbing dreams, heightened senses too much so change in mood aggressiveness

► Context dependent

"Ambien gave me a terrible headache"

"Ambien made my **headache** go away"

► Context dependent

"Ambien gave me a terrible headache"

"Ambien made my **headache** go away"

▶ Colloquial

"hard time getting some Z's"

► Context dependent

"Ambien gave me a terrible headache"

"Ambien made my **headache** go away"

► Colloquial

"hard time getting some Z's"

► Non-grammatical

"Short term more loss"

► Context dependent

"Ambien gave me a terrible headache"

"Ambien made my **headache** go away"

Colloquial

"hard time getting some Z's"

► Non-grammatical

"Short term more loss"

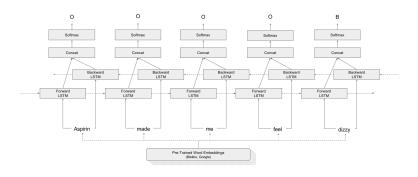
▶ Coordination

"abdominal gas, cramps and pain"

Approach:

LSTM with knowledge graph embeddings

Task Formulation


Assign a Beginning, Inside, or Outside label for each word

Example

" $[I]_O$ [stopped] $_O$ [taking] $_O$ [Ambien] $_O$ [after] $_O$ [three] $_O$ [weeks] $_O$ - $[it]_O$ [gave] $_O$ [me] $_O$ [a] $_O$ [terrible] $_{ADR-B}$ [headache] $_{ADR-I}$ "

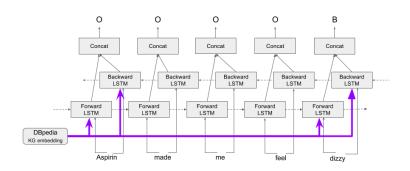
Model

- ▶ bi-RNN transducer model
 - ► Outputs a BIO tag for each word
 - ► Takes into account context from both past and future words

Integrating External Knowledge

- ► DBPedia: Knowledge graph based on Wikipedia
 - ► (Ambien, type, Drug)
 - ► (Ambien, contains, hydroxypropyl)

Integrating External Knowledge


- ► DBPedia: Knowledge graph based on Wikipedia
 - ► (Ambien, type, Drug)
 - ► (Ambien, contains, hydroxypropyl)
- ► Knowledge graph embedding
 - ► Dense representation of entities
 - ► Desirably:

Related entities in DBPedia \iff Closer in KB-embedding

Integrating External Knowledge

- ► DBPedia: Knowledge graph based on Wikipedia
 - ► (Ambien, type, Drug)
 - ► (Ambien, contains, hydroxypropyl)
- ► Knowledge graph embedding
 - ► Dense representation of entities
 - ▶ Desirably: Related entities in DBPedia ⇔ Closer in KB-embedding
- ▶ We experiment with a simple approach:
 - ► Add verbatim *concept* embeddings to word feats

Prediction Example

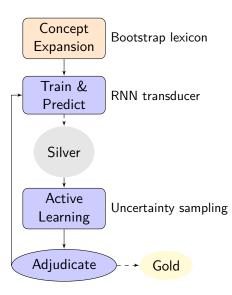
Evaluation

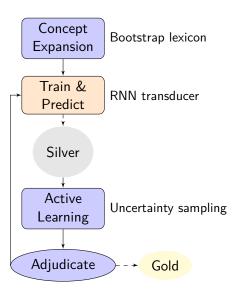
	Р	R	F1
ADR Oracle	55.2	100	71.1

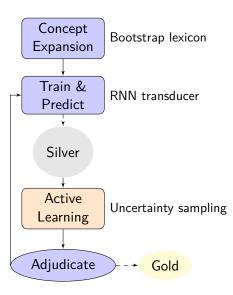
- ► ADR Orcale Marks gold ADR's regardless of context
 - \blacktriangleright Context matters \rightarrow Oracle errs on 45% of cases

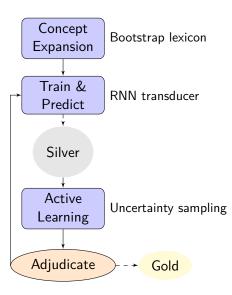
Evaluation

	Emb.	% OOV	Р	R	F1
ADR Oracle			55.2	100	71.1
LSTM	Random		69.6	74.6	71.9
LSTM	Google	12.5	85.3	86.2	85.7
LSTM	Blekko	7.0	90.5	90.1	90.3

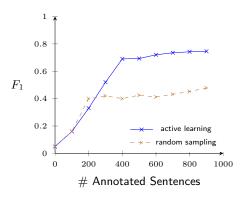

- ► ADR Orcale Marks gold ADR's regardless of context
 - \blacktriangleright Context matters \rightarrow Oracle errs on 45% of cases
- ► External knowledge improves performance:
 - ▶ Blekko > Google > Random Init.


Evaluation


	Emb.	% OOV	Р	R	F1
ADR Oracle			55.2	100	71.1
LSTM	Random		69.6	74.6	71.9
LSTM	Google	12.5	85.3	86.2	85.7
LSTM	Blekko	7.0	90.5	90.1	90.3
LSTM + DBPedia	Blekko	7.0	92.2	94.5	93.4


- ► ADR Orcale Marks gold ADR's regardless of context
 - \blacktriangleright Context matters \rightarrow Oracle errs on 45% of cases
- ► External knowledge improves performance:
 - ► Blekko > Google > Random Init.
 - ► DBPedia provides embeddings for 232 (4%) of the words

Active Learning: Concept identification for low-resource tasks



Training from Rascal

- ► Performance after 1hr annotation: 74.2 F1 (88.8 P, 63.8 R)
- Uncertainty sampling boosts improvement rate

Future Work

- ► Use more annotations from CADEC
 - ► E.g., symptoms and drugs
- ► Use coreference / entity linking to find DBPedia concepts

Conclusions

- ► LSTMs can predict ADR on social media
- ► Novel use of knowledge base embeddings with LSTMs
- Active learning can help ADR identification in low-resource domains

Conclusions

- ► LSTMs can predict ADR on social media
- ► Novel use of knowledge base embeddings with LSTMs
- Active learning can help ADR identification in low-resource domains

Thanks for listening! Questions?