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Grammatical Gender

e Some languages encode grammatical gender (Spanish, Italian, Russian, ...)
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Grammatical Gender

e Some languages encode grammatical gender (Spanish, Italian, Russian, ...)
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e Other languages do not (English, Turkish, Basque, Finnish, ...)

"
2 S "™ doctor teacher

AW

>
o

e



Translating Gender

e Variations in gender mechanisms prohibit one-to-one translations
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La doctora le pidié a la enfermera que le ayudara con el procedimiento.
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Is MT gender biased?

Turkish is a gender neutral language. There is no "he" or
"she" - everything is just "0". But look what happens when
Google translates to English. Thread:

Turkish - detected~ Y ) & English~ 'D 2D
o bir agg! she is a cook

o bir miihendis he is an engineer

o bir doktor he is a doctor

o bir hemgire she is a nurse

o bir temizlikgi he is a cleaner

o bir polis He-she is a police

o bir asker he is a soldier

o bir 6gretmen She's a teacher

o bir sekreter he is a secretary
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Reducing gender bias in Google Translate

Over the course of this year, theres been an effort across Google to promote faimess and
reduce bias in machine learning. Our latest development in this effort addresses gender
bias by providing feminine and masculine translations for some gender-neutral words on
the Google Translate website.

Google Translate learns from hundreds of millions of already-translated examples from
the web. Historicaly, it has provided only ane translation for a query, even if the translation

could have either a feminine or masculine form. So when the model produced one
translation, it inadvertently replicated gender biases that already existed. For example: it
would skew masculine for words like *strong” or “doctor” and feminine for other words,

like ‘nurse” or “beautiful

Now you'l get both a feminine and masculine translation for a single word-like
“surgeon™when translating from English into French, Italian, Portuguese or Spanish.
You'llalso get both translations when translating phrases and sentences from Turkish to
English. For example,if you type " bir doktor” in Turkish, you'll now get 'she is a doctor”
and "he is a doctor” s the gender-specific translations.
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Gretchen McCulloch & @GretchenAMcC - 6 Dec 2018 v
‘ | actually like this a lot.

Introduces the human back into the equation by acknowledging ambiguity,
letting us decide which translation fits a particular circumstance better.

+  Google @ @Google
° To reduce gender bias in #GoogleTranslate, we're
providing feminine and masculine translations for queries
that include gender neutral words — goo.glvgvt7v
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(but really, a very hard and interesting
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English Source Texts

e Winogender (Rudinger et al., 2018) & WinoBias (Zhao et al., 2018)
o 3888 English sentences designed to test gender bias in coreference resolution
o  Following the Winograd schema

The doctor asked the nurse to help him in the procedure.
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English Source Texts

e Winogender (Rudinger et al., 2018) & WinoBias (Zhao et al., 2018)
o 3888 English sentences designed to test gender bias in coreference resolution
o  Following the Winograd schema

The doctor asked the nurse to help him in the procedure.

® Observation: These are very useful for evaluating gender bias in MT!
o  Equally split between stereotypical and non-stereotypical role assignments
o  Gold annotations for gender
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1. Translate the coreference bias datasets
o To target languages with grammatical gender Input: MT model + target language
Output: Accuracy score for gender translation
2. Align between source and target
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Methodology: Automatic evaluation of gender bias

1. Translate the coreference bias datasets

o To target languages with grammatical gender Input: MT model + target language
Output: Accuracy score for gender translation

2. Align between source and target

o Using fast align (Dyer et al., 2013) Quality estimated at > 85% vs. 90% IAA
Doesn’t require reference translations!

3. Identify gender in target language
o  Using off-the-shelf morphological analyzers or simple heuristics in the target languages
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Research Questions

2. How much does MT rely on gender stereotypes vs. meaningful context?
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Results

Accuracy (%)

Accuracy (%)

MT struggles with non-stereotypical roles across languages and systems

Often doing significantly worse than random coin-flip

Academic models (Ott et al., 2018; Edunov et al., 2018) exhibit similar behavior
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Examples

ENGLISH - DETECTED GERMAN ARABIC HEBREW v & SPANISH ENGLISH GERMAN v
The lawyer yelled at the hairdresser because he did X El abogado le grité al_apeluqu% porque hizo un W
a bad job. \j mal trabajo.
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ENGLISH - DETECTED GERMAN ARABIC HEBREW v g SPANISH ENGLISH GERMAN v

The lawyer yelled at the hairdresser because ghe did X El abogado le grit6 a |a peluquera porque ella hizo ¥

a bad job. \/ un mal trabajo.
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Research Questions

3. Can we reduce gender bias by rephrasing source texts?
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Do Gendered Adjectives Affect Translation?

® Black-box injection of gendered adjectives (similar to Moryossef et al., 2019)
O  the pretty doctor asked the nurse to help her in the operation

O  the handsome nurse asked the doctor to help him in the operation

e Improved performance for most tested languages and models [mean +8.6%]
0 4+ 10% on Spanish and Russian

® Requires oracle coreference resolution!
o  Attests to the relation between coreference resolution and MT



Limitations & Future Work

e Artificially-created dataset
o  Allows for controlled experiment
o  Yet, might introduce its own annotation biases

e Medium-size
o  Easy to overfit - not good for training



Limitations & Future Work

e Artificially-created dataset
o  Allows for controlled experiment
o  Yet, might introduce its own annotation biases

e Medium-size
o  Easy to overfit - not good for training

e Future work
o  Collect naturally occurring samples on a large scale



Conclusion

e First quantitative automatic evaluation of gender bias in MT
o 6 SOTA MT models on 8 diverse target languages
o Doesn’t require reference translations

e Significant gender bias found in all models in all tested languages

e Code and data: https://github.com/gabrielStanovsky/mt_gender
o  Easily extensible with more languages and MT models
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Conclusion

e First quantitative automatic evaluation of gender bias in MT
o 6 SOTA MT models on 8 diverse target languages
o Doesn’t require reference translations

e Significant gender bias found in all models in all tested languages

e Code and data: https://github.com/gabrielStanovsky/mt gender
o  Easily extensible with more languages and MT models

Thanks for listening!
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