Factuality Prediction over Unified Datasets

Gabriel Stanovsky, Judith Eckle-Kohler, Yevgeniy Puzikov,

Ido Dagan and Iryna Gurevych

Bar-Ilan University, UKP - TU Darmstadt

ACL 2017

Factuality Task Definition

Author's commitment towards a proposition

Factual

- It is not surprising that the Cavaliers lost the championship
- Uncertain
 - She still has to check whether the experiment succeeded
- Counter-factual
 - Don was dishonest when he said he paid his taxes
- Useful for
 - Knowledge base population
 - Question answering
 - Recognizing textual entailment

In this talk

• Problem: Limited Generality

• Previous work focused on *specific* flavors of factuality

• Approach

- Build a unified dataset
- Train a new model

Contributions

- Normalized annotations
- Large aggregated corpus
- Improving performance across datasets

Problem: Limited Generality

Datasets

- Many annotation efforts
 - FactBank (Saur' I and Pustejovsky, 2009)
 - UW (Lee et al., 2015)
 - Meantime (Minard et al., 2016)
 - ... and more
- Datasets differ in various aspects
 - Discrete vs. continuous values
 - Expert vs. crowdsourced annotation
 - Point of view

Annotated Examples

FactBank vs. UW

Previous Work: Factuality Prediction

- Models were designed and evaluated on *specific* datasets
- For example, Lee et al. (2015):
 - Used SVM on syntactic features
 - lemma, POS, dependency paths
 - Tested on the UW corpus
- \rightarrow Non-comparable results
- \rightarrow Limited portability

Solution: Unified Corpus Extending TruthTeller Evaluation

Simple Normalization

- Mapping discrete values to the continuous UW scale
 - Simple mapping based on overlapping annotations

Unified Factuality Corpus

Unified Factuality Corpus

Biased Distribution

- Corpus skewed towards factual
- Inherent trait of the news domain?

Solution: Unified Corpus Model: Extending TruthTeller Evaluation

TruthTeller (Lotan et al., 2013)

- Rule based approach on dependency trees
 - Karttunen implicative signatures
 - Syntactic cues (modality, negation, etc.)

• Hand-written lexicon of 1,700 predicates

Extending TruthTeller

- Semi automatic extension of lexicon by 40%
 - Translated from German verb classes (Eckle-Kohler, ACL 2016)
- Supervised learning: TruthTeller as signal
- Application of implicative signatures on PropS advcl advmod ccomp dobj nsub Don was dishonest when he said he paid taxes \downarrow PropS mod prop_of mod comp dobj sub Don was **dishonest** when he said he paid taxes

Solution:

Unified Corpus Extending TruthTeller Evaluation

Metrics (lee et al., 2015)

- 1. Mean Absolute Error
 - Range: [0, 6]
 - Smaller is better!
- 2. Pearson Correlation
 - How good is a system in recovering the variation
 - Well-suited for the biased news domain

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Marking all propositions as factual Is a strong baseline on this dataset

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Dependency features correlate well

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Applying implicative signatures on AMR did not work well

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Hard coded rules aren't robust Enough across datasets

Dataset	FactBank		UW		MEANTIME	
	MAE	r	MAE	r	MAE	r
All-factual	.80	0	.78	0	.31	0
UW feat.	.81	.66	.51	.71	.56	.33
AMR	.66	.66	.64	.58	.44	.30
Rule-based	.75	.62	.72	.63	.35	.23
Supervised	.59	.71	.42	.66	.34	.47

Our extension of TruthTeller gets good results across all datasets

Conclusions and Future Work

- Resources made publicly available
 - Unified Factuality corpus
 - Conversion code and trained models
- Future work
 - Annotate diverse domains
 - Integrate TruthTeller with more lexical-syntactic feats.
- Try our online demo: <u>http://u.cs.biu.ac.il/~stanovg/factuality.html</u>

Thanks for listening!