Open IE as an Intermediate Structure for Semantic Tasks

Gabriel Stanovsky, Ido Dagan and Mausam

Sentence Level Semantic Application

Sentence

Intermediate Structure

Feature Extraction

Example: Sentence Compression

Sentence

Dependency Parse

Feature Extraction

Example: Sentence Compression

Sentence

Dependency Parse

Short Dependency Paths

Example: Sentence Compression

Sentence

Dependency Parse

Short Dependency Paths

Sentence Compression

Research Question

- Open Information Extraction was developed as an end-goal on itself
- ...Yet it makes structural decisions

Can Open IE serve as a useful **intermediate representation**?

Open Information Extraction

(John, married, Yoko)

(John, wanted to leave, the band)

(The Beatles, broke up)

Open Information Extraction

(John, wanted to leave, the band) predicate

argument

argument

• Infinitives and multi word predicates

(John, wanted to leave, the band)

(The Beatles, broke up)

Coordinative constructions

"John decided to compose and perform solo albums"

(John, decided to compose, solo albums)

(John, decided to perform, solo albums)

• Appositions

"Paul McCartney, founder of the Beatles, wasn't surprised"

(Paul McCartney, wasn't surprised)

(Paul McCartney, [is] founder of, the Beatles)

• Test Open IE versus:

- Test Open IE versus:
 - Bag of words

John wanted to leave the band

- Test Open IE versus:
 - Dependency parsing

- Test Open IE versus:
 - Semantic Role Labeling

Sentence

Intermediate Structure

Feature Extraction

Sentence

Intermediate Structure

Feature Extraction

Sentence

Feature Extraction

Textual Similarity

- Domain Similarity
 - Carpenter $\leftarrow \rightarrow$ hammer
 - Various test sets:
 - Bruni (2012), Luong (2013), Radinsky (2011), and ws353 (Finkelstein et al., 2001)
 - ~5.5K instances
- Functional Simlarity
 - Carpenter $\leftarrow \rightarrow$ Shoemaker
 - Dedicated test set:
 - Simlex999 (Hill et al, 2014)
 - ~1K instances

[Functional similarity]

[Domain similarity]

• (man : king), (woman : ?)

• (man : king), (woman : queen)

- (man : king), (woman : queen)
- (Athens : Greece), (Cairo : ?)

- (man : king), (woman : queen)
- (Athens : Greece), (Cairo : Egypt)

- (man : king), (woman : queen)
- (Athens : Greece), (Cairo : Egypt)
- Test sets:
 - Google (~195K instances)
 - MSR (~8K instances)

Reading Comprehension

• MCTest, (Richardson et. al., 2013)

• Details in the paper!

Textual Similarity and Analogies

- Previous approaches used distance metrics over word embedding:
 - (Mikolov et al, 2013) lexical contexts
 - (Levy and Goldberg, 2014) syntactic contexts
- We compute embeddings for Open IE and SRL contexts
- Using the same training data for all embeddings (1.5B tokens Wikipedia dump)

• Lexical contexts

(for word **leave**)

(Mikolov et al., 2013)

• Syntactic contexts

(for word leave)

John

(Levy and Goldberg, 2014)

• Syntactic contexts

(for word leave)

John

(Levy and Goldberg, 2014)

A context is formed of word + syntactic relation

SRL contexts

(for word leave)

Available at author's website

Available at author's website

Results on Textual Similarity

	Open IE	Lexical	Deps	SRL
bruni	.757	.735	.618	.491
luong	.288	.229	.197	.171
radinsky	.681	.674	.592	.433
simlex	.39	.365	.447	.306
ws353-rel	.647	.64	.492	.551
ws353-sym	.77	.763	.759	.439
ws353-full	.711	.703	.629	.693

Results on Textual Similarity

	Open IE	Lexical	Deps	SRL]
bruni	.757	.735	.618	.491]
luong	.288	.229	.197	.171	1
radinsky	.681	.674	.592	.433]
simlex	.39	.365	.447	.306] S o
ws353-rel	.647	.64	.492	.551]
ws353-sym	.77	.763	.759	.439]
ws353-full	.711	.703	.629	.693	

Syntactic does better on functional similarity

Results on Analogies

	Google		MSR	
	Add	Mul	Add	Mul
Open IE	.714	.719	.529	.55
Lexical	.651	.656	.438	.455
Deps	.34	.367	.4	.434
SRL	.352	.362	.389	.406

Additive

 $\arg \max_{b^* \in V} \left(\cos \left(b^*, b \right) - \cos \left(b^*, a \right) + \cos \left(b^*, a^* \right) \right)$

 $\arg\max_{b^*\in V} \frac{\cos\left(b^*,b\right)\cos\left(b^*,a^*\right)}{\cos\left(b^*,a\right)+\varepsilon}$

Multiplicative

Results on Analogies

	Google		MSR	
	Add	Mul	Add	Mul
Open IE	.714	.719	.529	.55
Lexical	.651	.656	.438	.455
Deps	.34	.367	.4	.434
SRL	.352	.362	.389	.406

State of the art with this amount of data

Additive

$$\arg\max_{b^* \in V} \left(\cos\left(b^*, b\right) - \cos\left(b^*, a\right) + \cos\left(b^*, a^*\right) \right)$$

$$\arg\max_{b^*\in V}\frac{\cos\left(b^*,b\right)\cos\left(b^*,a^*\right)}{\cos\left(b^*,a\right)+\varepsilon}$$

Multiplicative

Domain vs. Functional Similarity

- Previous work has identified that:
 - Lexical contexts induce domain similarity
 - Syntactic contexts induce functional similarity
- What kind of similarity does Open IE induce?

Open IE combines domain and functional similarity in a single framework!

Concluding Example

- (gentlest: gentler), (loudest:?)
 - Lexical: higher-pitched
 - Syntactic: thinnest
 - SRL: unbelievable
 - Open-IE: louder

- X [Domain Similar]
- X [Functionally Similar]
- X [Functionally Similar?]

V

Conclusions

- Open IE makes different structural decisions
 - These can prove beneficial in certain tasks
- A key strength is Open IE's ability to balance lexical proximity with long range dependencies in a single representation
- Embeddings made available: <u>www.cs.bgu.ac.il/~gabriels</u>

Thank you! Questions?