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(a somewhat obvious) Introduction

• Performance relies on the amount of training data 

• It is expensive to get annotated data on a large scale

• Can we use external knowledge as additional signal?



In this talk

• Recognizing adverse drug reactions in social media
• Integrating knowledge graph embeddings

• Factuality detection
• Using multiple annotated datasets

• Acquiring predicate paraphrases
• Using Twitter metadata and syntactic information
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In this talk

1. Problem: Identifying adverse drug reactions in social media
I “I stopped taking Ambien after three weeks, it gave me a

terrible headache”

2. Approach
I LSTM transducer for BIO tagging
I + Signal from knowledge graph embeddings

3. Active learning
I Simulates a low resource scenario
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Task Definition

Adverse Drug Reaction (ADR)
Unwanted reaction clearly associated with the intake of a drug

I We focus on automatic ADR identification on social media



Motivation - ADR on Social Media

1. Associate unknown side-effects with a given drug

2. Monitor drug reactions over time

3. Respond to patients’ complaints



CADEC Corpus (Karimi et al., 2015)

ADR annotation in forum posts (Ask-A-Patient)

I Train: 5723 sentences
I Test: 1874 sentences



Challenges
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I Context dependent
“Ambien gave me a terrible headache”
“Ambien made my headache go away”

I Colloquial
“hard time getting some Z’s”

I Non-grammatical
“Short term more loss”

I Coordination
“abdominal gas, cramps and pain”
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I Non-grammatical
“Short term more loss”

I Coordination
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Approach:
LSTM with knowledge graph embeddings



Task Formulation

Assign a Beginning, Inside, or Outside label for each word

Example
“[I]O [stopped]O [taking]O [Ambien]O [after]O [three]O [weeks]O –
[it]O [gave]O [me]O [a]O [terrible]ADR-B [headache]ADR-I”



Model

I bi-RNN transducer model
I Outputs a BIO tag for each word
I Takes into account context from both past and future words



Integrating External Knowledge

I DBPedia: Knowledge graph based on Wikipedia
I (Ambien, type, Drug)
I (Ambien, contains, hydroxypropyl)

I Knowledge graph embedding
I Dense representation of entities
I Desirably:

Related entities in DBPedia ⇐⇒ Closer in KB-embedding

I We experiment with a simple approach:
I Add verbatim concept embeddings to word feats
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Prediction Example



Evaluation

P R F1

ADR Oracle 55.2 100 71.1

I ADR Orcale - Marks gold ADR’s regardless of context
I Context matters → Oracle errs on 45% of cases
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Evaluation

Emb. % OOV P R F1

ADR Oracle 55.2 100 71.1
LSTM Random 69.6 74.6 71.9
LSTM Google 12.5 85.3 86.2 85.7
LSTM Blekko 7.0 90.5 90.1 90.3
LSTM + DBPedia Blekko 7.0 92.2 94.5 93.4

I ADR Orcale - Marks gold ADR’s regardless of context
I Context matters → Oracle errs on 45% of cases

I External knowledge improves performance:
I Blekko > Google > Random Init.
I DBPedia provides embeddings for 232 (4%) of the words



Active Learning:
Concept identification for low-resource tasks
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Training from Rascal
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active learning
random sampling

I Performance after 1hr annotation: 74.2 F1 (88.8 P, 63.8 R)
I Uncertainty sampling boosts improvement rate



Wrap-Up



Future Work

I Use more annotations from CADEC
I E.g., symptoms and drugs

I Use coreference / entity linking to find DBPedia concepts



Conclusions

I LSTMs can predict ADR on social media

I Novel use of knowledge base embeddings with LSTMs

I Active learning can help ADR identification in low-resource
domains
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Outline

• Factuality detection is a difficult semantic task
• Useful for downstream applications

• Previous work focused on specific flavors of factuality
• Hard to compare results

• Hard to port improvements

• We build a unified dataset and a new predictor
• Normalizing annotations

• Improving performance across datasets



Factuality
Task Definition

• Determining author’s commitment
• It is not surprising that the Cavaliers lost the championship

• She still has to check whether the experiment succeeded

• Don was dishonest when he said he paid his taxes

• Useful for
• Knowledge base population

• Question answering

• Recognizing textual entailment



Annotation

• Many shades of factuality
• She might sign the contract

• She will probably get the grant

• She should not accept the offer

• ….

• A continuous scale from factual to counter-factual
(Saur´ı and Pustejovsky, 2009)



Datasets

• Datasets differ in various aspects



Factuality Prediction

• Previous models developed for specific datasets

 Non-comparable results

 Limited portability



Normalizing Annotations



Biased Distribution

• Corpus skewed towards factual

• Inherent trait of the news domain?



Predicting 

• TruthTeller (Lotan et al., 2013)
• Used a lexicon based approach on dependency trees

• Applied Karttunen implicative signatures to calculate factuality

• Extensions
• Semi automatic extension of lexicon by 40%

• Application of implicative signatures on PropS

• Supervised learning



Evaluations



Evaluations

Marking all propositions as factual
Is a strong baseline on this dataset



Evaluations

Dependency features correlate well



Evaluations

Applying implicative signatures on 
AMR did not work well



Evaluations

Our extension of TruthTeller gets 
good results across all datasets



Conclusions and Future Work

• Unified Factuality corpus made publicly available
• Future work can annotate different domains

• External signal improves performance across datasets

• Try our online demo:
http://u.cs.biu.ac.il/~stanovg/factuality.html

http://u.cs.biu.ac.il/~stanovg/factuality.html
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Motivation
● Identifying that different predicate mentions refer to the same event

e.g. in question answering:

○ Question
■ “When did same-sex marriage become legal in the US?"

○ Candidate Passages
■ “In June 2015, the Supreme Court ruled for same-sex marriage.”
■ “President Trump might end same-sex marriage next year.”



Our Contribution
● We released a resource of predicate paraphrases that we extracted 

automatically from news headlines in Twitter:

○ Up to 86% accuracy for predicate paraphrases
At different support levels

○ Ever-growing resource: currently around 
0.5 million predicate paraphrases

○ Expected to reach 2 million in a year

https://github.com/vered1986/Chirps

https://github.com/vered1986/Chirps


Outline
● Resource creation

○ Obtaining News Tweets
○ Proposition Extraction
○ Generating Paraphrase Instances
○ Generating Paraphrase Types

● Analysis
○ Accuracy by score
○ Accuracy by time

● Comparison to existing resources



Method



Presumptions
● Main assumption: redundant news headlines of the same event are likely to 

describe it with different words.
○ This idea has been leveraged in previous work 

(e.g. Shinyama et al., 2002; Barzilay and Lee, 2003).

● Other assumption (this work): propositions extracted from tweets discussing 
news events, published on the same day, that agree on the arguments, 
are predicate paraphrases.

○ Let’s look at some examples.



[Amazon] [Whole Foods]
to buy
is buying
to acquire



Step #1 - Collecting News Tweets
● We query the Twitter Search API
● We use Twitter’s news filter 

○ Retrieves tweets containing links to news websites

● We limit the search to English tweets
● We “clean” the tweets, e.g.:

○ Remove “RT”
○ Remove links
○ Remove mentions



Step #2 - Proposition Extraction
● We extract propositions from the tweets using PropS (Stanovsky et al., 2016).
● We focus on binary verbal predicates, and obtain predicate templates, e.g.:

● We employ a pre-trained argument reduction model to remove non-restrictive 
argument modifications (Stanovsky and Dagan, 2016). 



Step #3 - Generating Paraphrase Instances
● We consider two predicates as paraphrases if: 

1. They appear on the same day
2. Each of their arguments aligns with a unique argument in the other predicate

● Two levels of argument matching: 
○ Strict: short edit distance, abbreviations, etc. 
○ Loose: partial token matching or WordNet synonyms

● Example:



Step #4 - Generating Types
● We assign a heuristic score for each predicate paraphrase type:

● For example: 
○ P1 = [a]0 purchase [a]1 , P2 = [a]0 acquire [a]1
○ Appeared with (Amazon, Whole Foods), (Intel, Mobileye), etc. count times in d days
○ Days since resource collection begun: N

● count assigns high scores for frequent paraphrases
● d/N eliminates noise from two arguments participating in different events on 

the same day
○ e.g. 1) Last year when Chuck Berry turned 90; 2) Chuck Berry dies at 90 



Resource Release
● We release our resource daily: 

https://github.com/vered1986/Chirps/tree/master/resource

● The resource release consists of two files: 
○ Instances: predicates, arguments and tweet IDs
○ Types: predicate paraphrase pair types ranked in a descending order according to a heuristic 

accuracy score

https://github.com/vered1986/Chirps/tree/master/resource


Analysis



Measuring Accuracy
● We annotate a sample of the extractions using Mechanical Turk
● We follow the instance-based evaluation (Szpektor et al., 2007) 

○ Judge the correctness of a paraphrase through 5 instances
○ Paraphrases are difficult to judge out-of-context



Accuracy by Score
● We partition the types into four score bins 

○ Only paraphrases with at least 5 instances 

● We annotate 50 types from each bin 

● Best scoring bin achieves up to 86% accuracy
● Accuracy generally increases with score
● Lowest-score bin contains rare paraphrases



Accuracy by Time
● We estimated accuracy through each week 

○ In the first 10 weeks of collection 

● Accuracy at a specific time: 
○ Annotating a sample of 50 predicate pair types 
○ with accuracy score ≥ 20 
○ in the resource obtained at that time

● Resource maintains around 80% accuracy 
● We predict that the resource will contain 

around 2 million types in one year.



Comparison to Existing Resources



Existing Resources
● We compare our resource with two relevant resources:

○ The Paraphrase Database (PPDB) (Ganitkevitch et al., 2013; Pavlick et al., 2015) 
■ a huge collection of paraphrases extracted from bilingual parallel corpora
■ syntactic paraphrases include predicates with non-terminals as arguments

○ Berant (2012):  
■ 52 million directional entailment rules
■ e.g. [a]0 shoot [a]1 → [a]0 kill [a]1



Comparison to Existing Resources
● At this stage, our resource is much smaller than existing resource

○ It is infeasible to evaluate it on an evaluation set

● Our resources adds value to the existing resources:
○ 67% of the accurate types (score ≥ 50) are not in Berant
○ 62% not in PPDB
○ 49% not in neither (see table)

● Our resource contains:
○ Non-consecutive predicates 

e.g. reveal [a]0 to [a]1 / share [a]0 with [a]1 

○ Context-specific paraphrases:
e.g. [a]0 get [a]1 / [a]0 sentence to [a]1



Thank you!
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